
Nonlinear Optimal Control: Reductions

to Newton Optimization

Nathan Ratliff

May 6, 2014

Abstract

This document explores nonlinear optimal control from the perspec-
tive of generic nonlinear optimization. We discuss first why optimization
is important to control and see one case, in particular, where optimizing
future performance leads to a simple control algorithm that differs in a
very interesting and intuitive way from an analogous PD control rule that
we might have written down directly. Building from that example, we
then develop some nonlinear optimal control algorithms and principles
more concretely and show that the natural approach of iteratively solv-
ing second-order approximations to the problem parallels a more general
methodology of Newton’s method for unconstrained nonlinear optimiza-
tion. In other words, classic algorithms such as DDP and iLQR may
be understood simply as variants on Newton’s method that exploit the
underlying structure of the discrete time optimal control problem. This
observation makes available a broad set of tools for solving these prob-
lem such as line search techniques, trust region methods, and nonlinear
methods from constrained optimization. To this end we discuss the ba-
sic principles behind Newton’s method for general nonlinear optimization
and derive an inequality constrained variant of the Augmented Lagrangian
algorithm and discuss their applicability to optimal control.

1 Why optimal control?

Consider a simple fixed-based system shown in Figure 1, and suppose we want
to control the system’s end-effector, defined by the forward kinematic function
x = φ(q), to some desired point xd. For simplicity, we’ll assume that the origin
of the Cartesian space coordinate system is at desired destination, so we say
that we simply want to control the robot’s end-effector to the origin xd = 0.
How might we design such a controller?

1



Figure 1: Simple fixed based manipulator. We want to control its fingertip
(end-effector) to the indicated target.

1.1 A classical approach

Classically, we might set up a PD controller in the Cartesian space using the
error e = xd − x to implement a control rule of the form

ẍd = Kpe−Kdẋ, (1)

where Kp and Kd are typically diagonal control gain matrices that allow us
to rescale individual dimensions as we see fit and trade off the damping term
effectively with the proportional error term. Then there are a number of ways
to turn that desired Cartesian acceleration into a torque command. We might
use the equation ẍ = Jφq̈ + J̇φq̇, where Jφ is the Jacobian of the kinematic
function φ, along with some form of null space resolution, to first transform
the acceleration into a desired configuration space acceleration q̈d and then use
inverse dynamics to calculate torque commands. Or we might use a more general
QP approach to minimize a quadratic objective of the form

Q(ẍ, τ ) =
1

2
‖ẍ− ẍd‖2 +

α

2
‖τ‖2 (2)

subject to constraints imposed by the fixed-base equations of motion (out of
contact) Mq̈+h = τ in addition to those kinematic equations ẍ = Jφq̈+ J̇φq̇.

This QP formulation gives us a lot of flexibility in the design of null space
resolution and effort trade-offs, but even if we solve this equality constrained
QP, it’s behavior is still fundamentally defined by the behavior of the simple
PD control differential equation given by Equation 1. Does that PD behavior
accurately describe how we want the robot behave? It effectively simulates
attaching a spring between the robot’s end-effector and the desired point, placing
the entire system in a viscous substance like honey, and letting it go. The
spring exerts a force and pulls the end-effector toward the desired point, and
the viscous solution exerts a damping force that tries to slow the end-effector

2



down proportionally to how fast it’s going. Do these simple principles of control,
built by analogy to physical spring-damper systems, really describe the nuances
of the behavior we’d like to see?

1.2 One-step optimal control

Our answer to the above question is clearly “no.” That’s just an opinion, but
there’s increasing evidence that Optimal Control (especially Stochastic Optimal
Control (see Todorov & Jordan (2002))) forms a good model of observed human
behavior. This section won’t go into detail about that work here, but instead
more generally motivates nonlinear optimal control. We introduce a one-step
lookahead optimal control approach to the above reaching example that derives
an alternative rule for generating accelerations. The derived rule is similar to
the PD rule, but differs in a very interesting and intuitive way. It explicitly
accounts for the shape of the potential in how it defines its velocity damping
which enables it to converge much more precisely to the desired point in practice.
Importantly for our purposes, this example demonstrates the basic elements and
tools that go into making nonlinear optimal control work.

Typically for problems like this we have some function in Cartesian space
ψ : R3 → R that defines progress toward the goal. It’s large when we’re far from
our goal, it decreases as we approach the goal, and it achieves a minimum when
we reach the goal. We find a number of different names for functions like this in
the literature, such as goal potentials, terminal potentials, heuristic functions,
value function approximations, cost-to-go approximators, etc. For our purposes,
all of these names are essentially equivalent; we’ll see below why some of the
more obscure names make theoretical sense.

For instance, if xd = 0, as we’re considering here, one such potential function
may be ψ(x) = ‖x‖. This function is simply the distance (the raw Euclidean
distance and not the squared distance) to the desired position, in this case the
origin.

Such a potential function is a very natural description of progress (we want
to move in a straight line to the goal), but it’s written in terms of x and doesn’t
directly tell us anything about ẍ let along τ . How can we turn it into something
at the very least that gives us a rule for Cartesian space accelerations ẍ that we
can use in place of Equation 1?

Consider the end-effector as though it were a point particle floating in space
(with no gravitational or viscous (air) forces), and suppose we applied an ac-
celeration ẍ to that point particle. If the point particle is currently at position
xt and moving at velocity ẋt, we know from basic mechanics that after a time
interval of ∆t, the particle will end up at a new position

xt+1 = xt + ∆tẋt +
1

2
∆t2ẍt. (3)

This equation gives us a glimpse into the future. It allows us to predict
where we’d be one time step from now if we apply a particular acceleration

3



ẍ for ∆t seconds. Thus, plugging this equation into ψ as its input gives us a
function over accelerations

ψ̃(ẍ) = ψ(xt + ∆tẋt +
1

2
∆t2ẍ) (4)

which measures the relative performance of any possible acceleration. ψ̃ tells us
what value ψ would have at the place we’d end up after accelerating at a rate
of ẍ for ∆t seconds had we started with position and velocity xt and ẋt. It’s
reasonable, therefore, to define the desired acceleration now using a rule of the
form

ẍt = argmin
ẍ

(
ψ̃(ẍ) +

λ

2
‖ẍ‖2

)
. (5)

This rule says simply that we want to choose the acceleration that would get
us to the best place (as measured by ψ), subject to that acceleration not being
too large (hence the last term, which penalizes the size of accelerations—with
large enough accelerations we can get anywhere, including the global minimum
of ψ, in just one time step, and that’s not realistic). This rule in Equation 5
is now something we can use in place of the above PD rule. And this new rule
explicitly optimizes future performance over one time step.

Unfortunately, this expression isn’t directly something we can easily ana-
lyze (and analytically optimize) since the objective isn’t our typical friendly
quadratic function. However, as always, we can approximate it using a second-
order Taylor expansion of ψ around our current position xt:

ψ̃(ẍ) ≈ ψ(xt) +∇ψT (∆tẋt +
1

2
∆t2ẍ) (6)

+
1

2

(
∆tẋt +

1

2
∆t2ẍ

)T [
∇2ψ

](
∆tẋt +

1

2
∆t2ẍ

)
+
λ

2
‖ẍ‖2,

where we’ve dropped the dependence of the gradient∇ψ(xt) and Hessian∇2ψ(xt)
on xt to simplify the notation.

Now we can optimize the function analytically and solve for the update
rule 5. Optimizing analytically amounts to setting the gradient (w.r.t. ẍ) of
the right hand side of Equation 6 to zero and solving for ẍ:

∇ẍψ̃(ẍ) ≈
(

1

2
∆t2

)
∇ψ +

(
1

2
∆t2

)[
∇2ψ

](
∆tẋt +

1

2
∆t2ẍ

)
+ λẍ = 0

⇒ ∇ψ + ∆t∇2ψẋt +

(
∆t2

2
∇2ψ +

2λ

∆t2
I

)
︸ ︷︷ ︸

A(∆t,λ)

ẍ = 0. (7)

Note that the matrix A(∆t, λ) depends on the size of the time step ∆t and
the strength of the parameter λ which constrains the size of ẍ. In particular,

4



when ∆t is small, A emphasizes primarily the second term I, and additionally,
as λ increases (i.e. we constrain the size of ẍ more), A doubly emphasizes I.
Thus, for the most part we can think of A and its inverse as approximately
proportional to I. Effectively, it doesn’t do much besides scale the result.

Solving for ẍ, therefore, gives

ẍt = A−1
[
−∇ψ −∆t∇2ψẋt

]
(8)

≈ α
(
−∇ψ − ∆t∇2ψẋt

)
,

where α is some proportionality constant.
Referring back to the simple PD rule in Equation 1, this new expression

bears a striking resemblance. If ψ is a squared distance to the goal, then the
negative gradient is the error between the goal point and the current location,
and the Hessian is just the identity, so this expression is practically the same.
But here, we’ve derived this rule generically for any differentiable ψ. And using
ψ(x) = ‖x‖, as is our running example, produces a different but very interesting
update rule.

The gradient and Hessian of ψ(x) = ‖x‖ are

∇ψ(x) = x̂

∇2ψ(x) =
1

‖x‖

(
I − x̂x̂T

)
.

(See Appendix A for a brief derivation.) Here x̂ = x/‖x‖ is the normalized
vector pointing in the direction of x.

The negative gradient is just a unit vector pointing directly toward the de-
sired destination (in this case the origin), and the Hessian is a projection matrix
that projects orthogonally to that direction (see Appendix B) with an extra scal-
ing factor of 1/‖x‖ that increases drastically as x approaches the origin.

Examining the optimization-based update rule in Equation 8 and using
ψ(x) = ‖x‖ (dropping the factor1 A−1), we get a rule that chooses acceler-
ations according to

ẍt ∝ −∇ψ −∆t ∇2ψ ẋt

= −x̂− ∆t

‖x‖

(
I − x̂x̂T

)
ẋt.

This rule tells us that, like the simple PD rule, we should accelerate in the
direction of the origin. But unlike the PD rule, rather than adding a blanket
damping term, this procedure suggests a more informed damping term that
specifically only damps the components of velocities orthogonal to the direction

1Note that the behavior of A−1 is more subtle than we’ve depicted here near the origin
since the factor 1

‖x‖ approaches infinity. That nuance is actually less interesting to us here

since in practice one would actually choose a smoother version of the potential function that
retains differentiability at the origin. For instance, a practical candidate is the soft-max
between ‖x‖ and its negative: ψ(x) = log(e‖x‖ + e−‖x‖) = ‖x‖ + log(1 + e−2‖x‖).

5



Figure 2: The optimal one-step lookahead rule discovers a policy that actively
damps specifically the component of velocity orthogonal to the desired direction
of travel.

we’d like the end-effector to be moving. Figure 2 depicts this damped direction
pictorially. Importantly, that damping term is scaled by a factor 1

‖x‖ since the

curvature of the potential becomes tighter as x approaches the origin. In terms
of the update rule, this means that the term damping (erroneous) velocity com-
ponents orthogonal to the desired direction of motion becomes more aggressive
as the end-effector approaches the desired origin point in order to ensure that
those components fully vanish.

This adaptive damping, which specifically act only on the components of the
velocity that indicate movement in the wrong direction, is very intuitive, but it’s
something we probably wouldn’t have hacked together on our own using finely
tuned PD rules. It takes some insight. But leveraging optimality principles
with forward prediction and Taylor approximations, deriving this rule is as
straightforward as writing down a potential function ψ that intuitively measures
progress toward the solution.

Note that if we modify the potential function ψ to measure progress to the
goal in terms of both position x and velocity ẋ, we can specify that the end-
effector reach the desired point (the origin) with, for instance, zero velocity:

ψ(x, ẋ) = ‖x‖+ γ‖ẋ‖, (9)

where γ > 0 is some positive trade-off constant. Using the velocity update
equation ẋt+1 = ẋt + ∆tẍ, we can perform a similar transformation of this
second term as we did above for the first term. Following this procedure leads

6



to a similar acceleration rule with a new damping term that now regulates the
overall velocity of the end-effector:

ẍ ≈ α
(
−x̂−∆t

(
I − x̂x̂T

)
ẋ− 2γ

∆t
̂̇x.) .

2 Foreseeing the future

The above example demonstrates many of the elements of modern approaches
to nonlinear optimal control. In general, we define a function ψ over the space
of positions and velocities that measures progress toward some task or goal.
We then predict forward into the future to see where the robot would be after
taking one or more actions and evaluate that forward prediction under ψ. That
composition gives us a nonlinear function over those hypothesized actions which
predicts the value of taking each action. And finally, we use a second-order
Taylor expansion (perhaps with some approximations to the Hessian) to turn
that nonlinear function into a nice quadratic function that we can analyze (in
particular, optimize) more easily. This section formalizes these ideas in a more
general setting enabling us to look even further into the future.

Suppose we have some abstract dynamics function of the form st+1 =
f(st,ut) where st is an abstract state of the system at time t (which may
include both position qt and velocity q̇t components), and ut is an abstract
action applied at that time (e.g. it may be the torques applied to the robot’s
joints). The discrete-time dynamics function f assumes that action ut is ap-
plied uniformly for the entire time period ∆t from time t to time t + 1, and
it tells us how the state transforms under the action during that time period.
This abstract function f is analogous to the simple Cartesian space kinematic
equations we saw in the example above:

st+1 = f(st,ut) →
[
xt+1

ẋt+1

]
=

[
xt + ∆tẋt + 1

2∆t2ẍt
ẋt + ∆tẍt

]
, (10)

with st = [xt; ẋt] and ut = ẍt, but in this section we make no assumptions about
f ’s specific structure, besides assuming that it is second-order differentiable in
both inputs.

The dynamics function f(st,ut) enables us to see into the future. Starting
from some state s1, if we posit that the robot take T actions u1, . . . ,uT , we can
calculate precisely where the robot will be at time T +1 by recursively applying
the dynamics function

s2 = f(s1,u1)

s3 = f(s2,u2)

...

sT+1 = f(sT ,uT ).

7



We typically care about two types of performance measure when examining
future states st that result from actions ut. The first type of cost function
measures how costly it is that we find ourselves in state st taking action ut. For
instance, if a robot finds itself close to a dangerous obstacle such as the edge
of a 100m cliff, and especially if it takes an action that brings it even closer to
the edge, then that’s much more costly than finding itself out dead center in
the middle of a parking lot not moving at all. That last example might not
be very good for achieving its goal (unless coincidentally that’s precisely where
it wanted it be), but this state cost term doesn’t care about goals, it cares
only very locally about how bad it is for the robot to find itself in its current
state taking its current action. We model this state-action cost using a term
ct(st,ut). Generally, these terms can encode information such as proximity to
joint limits or obstacles in the environment, secondary tasks such as holding
objects upright, or even biases for contacting surfaces in the environment to
promote stability. The second type of cost function measures progress toward
some goal as defined by a terminal cost ψ(sT+1). This goal is an abstract notion
of what we would like the robot to accomplish (eventually). For instance, the
above reaching task measured progress toward some distinct goal state. Other
terminal costs may measure how far the center of mass of the robot is at time
T + 1 from some desired location, or it may measure simply proximity to losing
balance is all we want is the robot to stay upright.

Using both types of terms, we can write the problem of optimizing actions
over future performance as

min
s1:T+1,u1:T

T∑
t=1

ct(st,ut) + ψ(sT+1) (11)

s.t. st+1 = f(st,ut) for each t = 1, . . . , T

[More equality and inequality constraints].

As indicated in Equation 11, we can additionally add more problem specific
equality and inequality constraints. For instance, rather than measuring prox-
imity to objects in the environment as costs, we could encode the surfaces in
the environment using the zero sets of functions g(st) that are positive outside
obstacles and negative when the robot is penetrating an obstacle. In that case,
the requirement that the robot should not be penetrating any obstacle may be
specified abstractly as the inequality constraints g(st) ≥ 0 for all t = 1, . . . , T+1.

Most of this document assumes that such inequality constraints are mod-
eled instead in terms of intermediate cost terms, but Section 4.2 reviews an
effective nonlinear constrained optimization algorithm that constructs increas-
ingly accurate unconstrained objectives by converting these extra constraints
into iteratively tuned penalties. The algorithm, in effect, automates the process
of reducing the problem to unconstrained optimization, taking that potentially
finicky step out of the hands of the controls engineer.

In the next section we’ll see the role quadratic approximations can play in
classical approaches to this nonlinear optimal control problem, and then later

8



in Section 5 we’ll see that we can understand these approaches simply as ap-
plications of Newton’s method that exploit structure in the Hessian for efficient
computation of Newton steps. Before we get there, though, Section 4 covers
some general unconstrained and constrained methods for nonlinear optimiza-
tion and particularly discusses the importance of building and solving local
quadratic approximations in nonlinear optimization.

3 Quadratic approximations in nonlinear opti-
mal control

As we saw in the example from Section 1.2, writing down the objective function
usually isn’t enough. We also need to optimize it. One way to do that, of
course, is to perform some form of gradient descent, but the convergence of
such algorithms can be slow due to chattering down long narrow troughs of the
objective landscape. So instead, to both optimization and analytic gain, we first
took a second-order Taylor expansion of the objective to find its best quadratic
approximation. That step is precisely what we do in this more general T -step
nonlinear control setting.

One of the primary questions that arises in this context of second-order
Taylor expansion is, where? Around what points do we create the approxima-
tion? This section explores the second-order Taylor expansion in the context of
nonlinear optimal control and this question in particular.

Here we consider only objective functions and dynamics, which is the clas-
sical setting. We’ll assume there are no hard equality constraints (except for
the dynamics function) and that any inequality constraints are encoded as cost
terms (e.g. barrier or penalty functions) that approach infinity at the bound-
ary (for instance, there might be a joint limit potential whose cost increases
to infinity as the robot approaches a joint limit). Section 4.2 introduces some
techniques from optimization for relaxing these assumptions.

3.1 The question of where

Where should we calculate a second-order Taylor expansions of our objective
terms? The second-order expansion of the tth term ct(st,ut) requires that we
choose nominal points {(st,ut)}Tt=1 around which to create the expansion in
advance. But the reason we’re taking this second-order expansion is to answer
the question of what the best st and ut would be. This chicken-and-egg problem
is a general problem in nonlinear optimization, and Section 4.1 explores it in
more detail. But within the current optimal control context, we’ll describe an
intuitive iterative algorithm that, as we’ll see below (modulo some technical
details), is the one that’s generally used in practice.

The best second-order approximation of the problem is the one formed
around the optimal trajectory (s1,u

∗
1), . . . , (sT ,u

∗
T ). So heuristically, one may

presume that the better we make nominal trajectory, the better that second-
order approximation will be, thereby leading to better nominal trajectories

9



through optimization. That cyclic logic suggests the following iterative algo-
rithmic template

1. Guess at some initial trajectory. This guess may come from previous poli-
cies optimized earlier that we’re currently executing and simultaneously
re-optimizing. Or we may be optimizing for the first time, in which case,
we can only really guess heuristically, or simply guess that we apply no ac-
tion at all. There’s no real science to this initialization phase, and different
heuristics work better for different problems. Typically this phase is swept
under the rug under the moniker of systems engineering, and depending
on the problem complexity, it could range from difficult to trivial.

2. Using the current state-action trajectory, take a second-order Taylor ex-
pansion of the problem.

3. Optimize the second-order Taylor expansion to find a better optimal state-
action trajectory. Go back to stage 2 and repeat until convergence.

3.2 How do we form and optimize the quadratic approxi-
mation?

So far we’ve argued that quadratic approximations are our end goal, but why
should we believe that we can solve these quadratic approximations efficiently?
In most interesting robots there are (roughly) anywhere between 7 and 30 action
variables ut at each time step (the torques applied to the joints, for instance),
approximately double that number of state-variables since there are both con-
figurations and velocities to represent, and there can be upward to maybe 100
time steps for effective discrete approximations. That, as a baseline, is 2100 to
9000 variables, and maybe even more. The Hessian of the system näıvely, then,
is a huge matrix on the order of 5000 by 5000 dimensional. Solving such a dense
system to optimize the quadratic can be done, but it’s rather slow.

Fortunately, we can leverage the structure of the problem to construct the
second-order approximation backward from the final time step while simultane-
ously solving it. As we’ll see, exploiting this structure significantly reduces the
computational complexity solving the system.

The full dynamically constrained problem (without extra constraints) takes
the form2

min
u1:T

T∑
t=1

ct(st,ut) + ψ(sT+1)

s.t. st+1 = f(st,ut) for all t.

We’ll first describe the optimal solution in terms of generic argmin operations,
and then discuss the nice properties that result when we can compute those
argmins analytically, in particular when we use quadratic approximations.

2The states st are fully determined by the action sequence, so we denote the optimization
to be over actions only.

10



Consider first the final potential ψ(sT+1). That final state is linked to
the second-to-last state and action through the dynamics function sT+1 =
f(sT ,uT ). Substituting that dynamics function into the potential gives ψ(f(sT ,uT )),
which is a function that looks one step into the future to tell us how costly it
will be to end up where taking action uT from state sT lands. There’s also
a cost explicitly on taking that action from that state cT (sT ,uT ). That’s the
only other place in the objective where uT appears, though, so to optimize over
uT , we only need to account for ψ and cT . In doing so, we define

VT (sT ) = min
uT

{
cT (sT ,uT ) + ψ(f(sT ,uT ))

}
as the summary of the optimization process after optimizing out uT . Using this
function, the objective reduces slightly to

min
u1:(T−1)

T−1∑
t=1

ct(st,ut) + V (sT )

s.t. st+1 = f(st,ut) for all t.

Now there are only T−1 intermediate cost terms along with a new terminal cost
term V (sT ), but other than that this objective retains the same structure as
the original objective. Thus, we can recursively continue this line of reasoning
to incrementally collapse each of the intermediate cost terms one-by-one into
new functions Vt(st):

Vt(st) = min
ut

{
ct(st,ut) + Vt+t (f(ht,ut))

}
︸ ︷︷ ︸

Qt(st,ut)

. (12)

Note that if we define VT+1(sT+1) = ψ(sT+1), this equation holds recursively
for all time t = 1, . . . , T . It’s common, especially in machine learning, to refer
to the unminimized intermediate cost plus value function as the Q-function
QT (st,ut) as indicated in the equation.

Equation 12 is important enough in Optimal Control to have its own name:
The Bellman Equation Bertsekas (2000). It characterizes the optimal solution
through these cost-to-go functions Vt(st). Each cost-to-go function represents
the cumulative cost that an optimal policy would accrue running that optimal
policy until time T + 1 starting from state st at time t. Under this observation
the role of the terminal potential function ψ becomes clear when it’s used as a
computational proxy for a process that in reality continues beyond the artificial
time horizon T + 1. It acts as an estimate of the optimal cost-to-go function
approximating the cumulative cost of taking optimal actions from then on out
to the end of time.

However, we have left the computational or analytical process by which we
solve the recursive inner loop minimizations in Equation 12 unspecified. In
general, for nonlinear systems and nonlinear objective terms, those minimiza-
tions are hard. By itself, the Bellman equation only tells us something about

11



the structure of the problem. But suppose every time we compute one of the
Q-functions Qt(st,ut), we subsequently approximated it using a second-order

Taylor expansion, denoted Q̃t(st,ut), around the particular state-action pair

(st,ut) from the current nominal trajectory. (Since we need to optimize Q̃,
we may have to compute the best fit positive definite quadratic approxima-
tion rather than a strict Taylor expansion, depending on the definiteness of the
Hessian. See Section 4.1 for a brief description of this issue in the context of
Newton’s method.)

Now that we have a quadratic function Q̃t(st,ut) at our disposal, we can
solve for the argmin over ut as a function of the state st. Rather than reviewing
the tedious calculation that derives the result we simply denote it as

u∗t (st) = argmin
ut

Q̃t(st,ut). (13)

When Q̃ is quadratic in both arguments, this function u∗t (st) is simply an affine
transformation of st. Thus, plugging it back into the quadratic tells us that the
cost-to-go function is also quadratic

Vt(st) = Q̃(st,u
∗
t (st)), (14)

which means that information over future variables entirely collapses down into
a single compact quadratic function over just the state. This algorithm for recur-
sively backing up second-order information along the trajectory using second-
order Taylor approximations of the Q-functions, in conjunction with the iterative
recalculations of the nominal trajectory around which these approximations are
made (see Section 3.1), is known as Differential Dynamic Programming Todorov
(2006); Stengel (1994); Bertsekas (2000).

Importantly, since each analytical solution u∗t (st) is an affine function of the
state, it’s a valid approximation for the optimal action to take from any state
st anywhere within the region of validity of the tth Taylor approximation. In
other words, it acts as an effective feedback control law within that region of
validity providing robustness to noise and system perturbation.

3.3 Do we have to calculate the full Taylor expansion?

The Differential Dynamic Programming iterative quadratic approximation tech-
nique is only one way to calculate a quadratic approximation of the nonlinear
problem around the current nominal trajectory. That approximation requires
accounting for second-order information about the dynamics, and that can be
slow to compute, especially when using finite-differencing Todorov et al. (2012).
More recently a slightly simpler approximation has become popular Todorov
(2006); Li & Todorov (2004); Todorov & Li (2005) that theoretically retains
similar convergence and convergence rate guarantees and empirically tends to
even find solutions faster in some situations (which comes from a combination
of a cheaper approximation and an empirical observation that it can converge
in fewer iterations).

12



This approximation, known as the Linear Quadratic approximation, makes
linear approximations of the dynamics function st+1 = f(st,ut) around the
nominal trajectory and quadratic approximations of intermediate cost functions
and the terminal cost. Using these constituent approximations, the resulting
dynamics are linear and the costs are quadratic giving

st+1 = Atst +Btut

ct(st,ut) ≈
1

2

[
st
ut

]T
Ct

[
st
ut

]
− bTt

[
st
ut

]
+ ct,

ψ(sT+1) ≈ 1

2
sTT+1GsT+1 − dTsT+1 + l,

for each time step t, where the parametersAt,Bt,Ct, bt, ct,G,d, l all come from
the respective Taylor expansions.

Since the approximate terminal potential is quadratic, substituting the lin-
ear dynamics equation in as sT+1 automatically gives a quadratic function for
the last time step’s Q-function Q(sT ,uT ). As discussed above, that quadratic
Q-function collapses to a quadratic function VT (sT ) over only sT when we op-
timize over the action variable uT . Thus, we can apply that argument recur-
sively from there to show that for all time the cost-to-go functions Vt(st) of this
Linear Quadratic approximation are all, themselves, quadratic. No further ap-
proximation is necessary, and every minimization step is just a linear algebraic
manipulation as we back up optimal cost-to-go information from the last time
step to the first. This algorithm, since each optimal feedback control policy
u∗t (st) is classically known as the Linear Quadratic Regulator (LQR) of the
Linear Quadratic system, is known as the Iterative Linear Quadratic Regulator
(iLQR) Li & Todorov (2004).

The next section explores an algorithm for nonlinear unconstrained opti-
mization algorithm called Newton’s method, which has a very similar flavor to
the above iterative quadratic approximation schemes for unconstrained nonlin-
ear optimal control. Indeed, Section 5 formalizes this connection and shows that
both DDP and iLQR may be viewed as simply efficiently solved implementa-
tions of Newtons method applied to the unconstrained objective with particu-
larly defined Hessian approximations. Anticipating that connection, Section 4.2
discusses a very efficient form of general constrained nonlinear optimization
algorithm that iteratively constructs unconstrained approximations and solves
them using Newton’s method. Section 5 additionally discusses applications of
this constrained algorithm to handle more generally constrained optimal control
problems.

4 A segue into more general nonlinear optimiza-
tion

We’ll see in Section 5 that the above iterative algorithms for nonlinear opti-
mal control are simply applications of traditional methods for nonlinear opti-

13



mization to the optimal control problem. This section explores some specific
high-performance algorithms for both unconstrained and constrained nonlinear
optimization.

4.1 Newton’s method

We can analytically optimize quadratic functions with symmetric positive defi-
nite Hessians. Suppose Q(x) = 1

2x
TAx − bTx + c where x, b ∈ Rn, A ∈ Rn2

,
and c ∈ R. Then if A is symmetric positive definite, then the global optimum
is where the gradient vanishes

∇Q(x∗) = Ax∗ − b = 0

⇒ x∗ = A−1b.

General smooth functions are more difficult to optimize. Around any point x0

we can always find the best fit quadratic approximation using the second-order
Taylor expansion. And we can solve that approximation analytically so long
as its Hessian is symmetric positive definite. But that latter criterion doesn’t
always hold—since the function need not be convex, there may be local regions
where the function is fully negative definite (curved downward everywhere) or
other areas where the function is positive definite (curved upward) in some
dimensions but negative definite (curved downward) in other dimensions (a
saddle point). More generally, the local curvature, even if it’s positive definite
(curved up in all directions), may not accurately reflect the shape of the function
closer to the minimum. Constructing a quadratic approximation based only on
the Hessian may be misleading. Thus, an optimization algorithm that leverages
quadratic approximations would have to iteratively calculate the best (or a
good) symmetric positive definite quadratic approximation in a way that doesn’t
overfit to the local shape, and only then solve it, and iterate from the new point.

And indeed, this is the crux of Newton’s method and its variants: find a
good, trustworthy, symmetric positive definite quadratic approximation to the
function around where we currently are, solve it, and iterate. Different variants
of this algorithm are defined by how we correct the quadratic approximation to
ensure that it’s trustworthy and symmetric positive definite, and how we search
in the direction suggestion by the approximation’s minimizer. Techniques for
ensuring that the approximation is both trustworthy and symmetric positive
definite are arguably the most interesting of these issues, so we explore them in
slightly more detail and refer to Nocedal & Wright (2006) for further discussion
around these and other issues.

Suppose our objective function is f : Rn → R and our current (ith) iterate
is xi ∈ Rn. Then we denote this best fit trustworthy positive definite quadratic
approximation by

f(x) ≈ f̃xi(x) (15)

= f(xi) +∇f(xi)
T (x− xi) +

1

2
(x− xi)THi(x− xi),

14



where Hi approximates the Hessian ∇2f(xi) in a way that ensures that it’s
positive definite (Hessians are always symmetric for the functions we’re consid-
ering). To calculate Hi, we may start immediately with an approximation to
the Hessian or we may start from the exact Hessian. Denote that (potentially

approximate) Hessian by ∇̃2f(xi). If the Hessian has some negative Eigenval-
ues, the approximation may add some positive constant to all Eigenvalues to
ensure their positivity, or it may first truncate those negative Eigenvalues to
0 before doing that. We’ll denote this fixed Hessian by ∇̃2

+f(xi). Finally, to
ensure that the quadratic approximation is trustworthy, we may add a term
λ
2 ‖x − xi‖

2 that pulls it back to the previous iterate xi. This term has the
effect of adding λI to the Hessian of the quadratic. Thus, with this notation,
our trustworthy positive definite Hessian takes the form Hi = ∇̃2

+f(xi) + λI.
The bottom line is that there are a number of techniques for calculating

variants of Hi, but the main feature of this matrix is that it starts from an
approximation to the Hessian of the objective, and then is modified to ensure
that we aren’t overfitting to the local second-order shape of the function should
that curvature not accurately reflect the shape closer to the minimum. Those
modifications stem from both ensuring that the matrix is positive definite and
that it’s trustworthy by effectively constraining how far the minimizer travels
from the current iterate.

Finally, solving this best fit symmetric positive definite approximation gives
an update rule of the form

xt+1 = xt − αtH−1
i ∇f(xi), (16)

where αt > 0 is a step size chosen by any number of techniques (e.g. fixed
sequence, line search, etc.). It’s beyond the scope of this document to dig deeper
into the details of line searches and Hessian modifications, but see Nocedal
& Wright (2006) for a thorough discussion of some of the subtleties around
Newton’s method and unconstrained optimization.

4.2 Augmented Lagrangian

Now suppose we have constraint functions as well. Mathematically, our abstract
optimization now becomes

min
x
f(x) (17)

s.t. g(x) ≥ 0

h(x) = 0,

where f : Rn → R is the objective function as before, g : Rn → Rk defines a set
of inequality constraints, and h : Rn → Rl defines a set of l equality constraints.

In this section, we present an equality and inequality constrained Augmented
Lagrangian algorithm for solving the general constrained nonlinear optimization
problem given in Equation 17.

15



The Lagrangian of the above problem is

L(x,λ,γ) = f(x)− λTg(x)− γTh(x). (18)

It’s beyond the scope of this document to fully review the first-order optimal-
ity conditions of this constrained optimization problem (see Nocedal & Wright
(2006) for a full development), but Appendix C briefly reviews the role of La-
grange Multipliers. For our purposes, the most important of these conditions
are that 1. all of the constraints must be satisfied, and 2. at the minimizer,

∇xL = ∇xf(x)−
k∑
i=1

λi∇xgi(x)−
l∑

j=1

γj∇xhj(x) = 0 (19)

with λi ≥ 0 for all i = 1, . . . , k.

λ and γ are vectors of Lagrange Multipliers corresponding to inequality and
equality constraints, respectively. Note that the positivity constraints are im-
posed only on λ because they’re associated with inequality constraints (see
Appendix C).

A natural approach to optimizing f while simultaneously satisfying the con-
straints is to place penalties on constraint violations and then to optimize instead
the sum of f plus the constraint penalties. Specifically, for equality constraints
h(x) = 0, any deviation of h from zero is a constraint violation, so we can mea-
sure the size of these violations using simply a squared norm penalty ‖h(x)‖2.
And since only negative deviations from g(x) = 0 are violations of the inequal-
ity constraints, the inequality penalty can simply be a one-sided version of the
squared penalty

‖g(x)‖2− =

k∑
i=1

s(gi(x)) gi(x)2, (20)

where s(α) is 1 when α is negative and zero otherwise. Figure 3 shows a graph
of this one-sided penalty.

This basic penalty approach would optimize a surrogate objective of the
form

ψ(x) = f(x) +
µ

2
‖g(x)‖2− +

η

2
‖h(x)‖2, (21)

where µ and η are positive penalty scalars. Unfortunately, for any finite setting
of µ and η the constraints will never be fully satisfied because the penalties are
always fighting with the objective (the constraints are only fully satisfied when
the penalties are exactly zero). The only way to fully satisfy the constraints is
to incrementally increase µ and η until they’re strong enough that the pull of
the function f is negligible. In practice, these large scalars induce poor con-
ditioning and numerical instability, so with this näıve approach we will always
have potentially non-negligible constraint violations.

16



Figure 3: One-dimensional rendering of a one-sided quadratic penalty.

The main problem with this penalty method is that the zero point of the
penalty function is precisely where the constraint surface is. We can never make
that penalty go entirely to zero because it’s battling with the objective function,
so solutions to the penalized problem never fully satisfy the constraints. The
Augmented Lagrangian algorithm addresses this issue by modifying where that
zero point lies in reaction to how the objective is pulling the optimizer into
constraint violations.

Intuitively, if x∗ is the minimizer of the penalized objective given in Equa-
tion 21 and x∗ currently violates the jth equality constraint (hi(x

∗) ≤ 0), we
need to modify the penalty so that it pulls harder on negative values of hi.
Thus, we move the zero point of the penalty to be a little bit positive by mod-
ifying it to be (vj − hj(x))2 where vj > 0. This modified penalty function is
minimized at the positive value vj , so it automatically pulls a little harder on hj
(without increasing the scalar penalty parameter η at all) to coax it toward the
constraint boundary. Importantly, we can come up with a very effective rule for
updating the penalty offsets by analyzing the first-order optimality conditions
of penalty function and comparing them to the optimality conditions of the
original problem.

The (offset) penalty method optimizes a surrogate objective of the following
form called the Augmented Lagrangian:

L(x,λ,γ) = f(x) +
µ

2
‖λ
µ
− g(x)‖2− +

η

2
‖γ
η
− h(x)‖2. (22)

Here we’ve written it as a penalized objective to emphasize the connection to
penalty methods, but as its name suggests, it’s actually closely related to the
Lagrangian function of the original problem. Multiplying out the penalty func-
tions and removing the constant terms reveals that it’s equivalently constructed
by simply adding the näıve zero-centered penalties to the original Lagrangian

17



function (and hence it’s an augmented Lagrangian):

L(x,λ,γ) = f(x)− λTg(x)− γTh(x) +
(µ

2
‖g(x)‖2− +

η

2
‖h(x)‖2

)
. (23)

Since Equation 22 is an unconstrained objective, the first-order optimality
conditions are simply a statement that it’s gradient is zero at the optimizer.
Thus, once we optimize this surrogate function L(x,λ,γ) over x using, for
instance, a Newton method, the following condition should hold

∇xL(x,λ,γ) = ∇f(x)− (λ− µg(x))︸ ︷︷ ︸
λ←

∇g(x)− (γ − ηh(x))︸ ︷︷ ︸
γ←

∇h(x).

As we’ve indicated in the equation, referring back to the first-order optimality
conditions of the original problem in Equation 19 we see that they’re exactly
the same, except with the substitutions

λ← λ− µg(x) (24)

γ ← γ − ηh(x).

Thus, if we use these equations as update rules for the Lagrange Multipliers,
after just a single iteration, the first-order optimality condition given by Equa-
tion 19 will be satisfied. (Note that we need to modify the update rule for
λ to ensure that the components are never negative. We can do this using
λi = max{0, λi − µgi(x)}.) There are more optimality conditions, so we’re not
done, but this is a very powerful observation and it forms the foundation of the
Augmented Lagrangian algorithm.

Note that if hj(x) is negative, this update will try to increase the zero point
γ
η of the jth penalty. And vice versa, if hj(x) is positive, it’ll try to decrease that
zero point. Thus, the update always attempts to modify the penalty in a way
that pulls the current optimizer toward the equality constraint. This process
only converges when h(x) = 0, which means that all equality constraints are
satisfied. Likewise, for the inequality constraints we have a similar scenario.
However, in this case, when gi(x) is already positive (i.e. the constraint is
satisfied) the update will decrease that component down to 0 and then the
process will stop (for that constraint).

Finally, as motivated by the derivation of the update rule in Equation 24, the
variables λ and γ converge to good estimates of the original problem’s Lagrange
Multipliers.

5 Nonlinear optimal control algorithms are ap-
plications of optimization methods

The algorithms of Section 4 are generic. Interestingly, though, we see now that
the algorithms DDP and iLQR described in Section 3 are more concisely de-
scribed simply as applications of Newton’s method to the optimal control prob-
lem. The specifics of how each variant constructs its approximate subproblem

18



are simply different ways of calculating the quadratic approximation. Moreover,
practical implementations of both DDP and iLQR need to leverage tricks from
the generic Newton’s method toolbox to correct negative definite Hessians (i.e.
to find the best fit positive definite approximation), ensure trustworthiness,
and choose step sizes appropriately. These tricks modify the approximation
and weaken our original analogy that these quadratic subproblems were just
quadratic (best) approximations to the original control problem. The better
description is simply that these algorithms are applications of Newton’s method
that exploit structure in the Hessian to efficiently solve the Newton step linear
system at each iteration.

This observation suggests additionally that constrained optimal control prob-
lems can be solved using the constrained cousin of Newton’s method: the
Augmented Lagrangian algorithm. Indeed, empirically the algorithm seems
to be very effective Toussaint (2014), although many recent explorations of
constrained optimal control in the literature have used a competing solution
technique called Sequential Quadratic Programming Posa et al. (2014). It is
not currently clear which algorithm is superior (or whether either algorithm is
uniformly better than the other in all cases) for this class of structured opti-
mization problem.

19



A Derivatives of distance potential

Consider the function ψ(x) = ‖x‖. We can calculate the gradient and Hessian of
the function (away from the origin where it’s undefined) by writing it as ψ(x) =

(xTx)
1
2 . For these calculations, it’s easy to forget the specifics of transposes

and what not in the rules for calculating derivatives of multivariate functions,
so it’s often easiest to simply calculate the individual partial derivatives of the
expression in terms of generic indices and then look to see if we can recognize
their compact vector and matrix forms.

First the gradient:

∂

∂xi
(xTx)

1
2 =

1

2

(
xTx

)− 1
2 2xi =

xi
‖x‖

⇒ ∇‖x‖ = x̂,

where x̂ = x/‖x‖.
Then the Hessian is:

∂2

∂xi∂xj
(xTx)

1
2 =

∂

∂xj

(
∂

∂xi
(xTx)

1
2

)
=

∂

∂xj

xi
‖x‖

=
‖x‖ ∂xi

∂xj
− xi ∂

∂xj
‖x‖

‖x‖2
=

1

‖x‖

(
∂xi
∂xj
− xi
‖x‖

xj
‖x‖

)
⇒ ∇2‖x‖ =

1

‖x‖

(
I − x̂x̂T

)
.

B Projecting orthogonally to a given direction.

For any unit vector x̂, the matrix P⊥ = I − x̂x̂T projects a vector orthogonally
to the direction indicated by x̂ as depicted in Figure 4. Why is this?

First, let’s examine what multiplication by P⊥ entails. Suppose we multiply
a vector v by P⊥. We get(

I − x̂x̂T
)
v = v −

(
x̂x̂T

)
v = v −

(
x̂Tv

)
x̂. (25)

The inner product in parentheses in that final expression is x̂Tv = ‖v‖ cos θ,
where θ is the angle between the two vectors x̂ and v. As indicated in Figure 4,
this quantity is the length of the projection of v onto x̂. Thus, multiplying that
length by the unit vector x̂, itself, gives the full vector which is the projection
of v onto x̂. One may also interpret this projection as simply the component of
v in the direction x̂.

Therefore, if (x̂Tv)x̂ is the component of v along the direction x̂, subtracting
that component from v gives the component of v orthogonal to the direction x̂.
In other words, multiplying a vector v by the matrix P⊥ gives the component
of v orthogonal to x̂. Or, viewed as a projection, the matrix projects the vector
v orthogonally to x̂.

20



Figure 4: Left: Depiction of a projection orthogonal to a vector x̂. v// is the
component of v parallel to x̂, and v⊥ is the component orthogonal to it. v⊥ lives
in an entire space of orthogonal vectors, depicted here as a plane orthogonal to
x̂. Right: The inner product has the relation vTx = ‖v‖‖x‖ cos θ, where θ is
the angle between the two vectors. Thus vT x̂ is the length of the projection of
v onto x (where x̂ = x

‖x‖ ).

C A brief review of Lagrange multipliers

General constrained nonlinear optimization problems take the form

min
x
f(x) (26)

s.t. g(x) ≥ 0

h(x) = 0,

where f : Rn → R is the objective, g : Rn → Rk is a collection of k inequality
constraint functions wrapped up into a single vector-valued function, and h :
Rn → Rl is a collection of l equality constraint functions wrapped up into a
single vector-valued function. We assume all functions are at least second-order
differentiable.

This section covers some intuition behind Lagrange multipliers. This isn’t a
complete development, but it should help in understanding the above material.
See Nocedal & Wright (2006) for a more complete discussion.

First consider only equality constraints. Note that for each equality con-
straint hj(x), the equation hj(x) = 0 defines a surface of dimension n − 1 on
which the optimal solution must lie. Figure 5 depicts this surface pictorially for
a 3-dimensional function. Importantly, at an optimal point of the optimization
problem in Equation 26 must be a point for which the gradient of the objective
is orthogonal to the surface. If it isn’t orthogonal to the surface, then there is
some component of the negative gradient tangent to the surface, which means
that we can move a small amount ε in that direction along the surface and de-
crease the objective value slightly. If we’re at a local optimum, that would be a
contradiction, so that can’t happen. The gradient of the objective is orthogonal
to the surface.

21



Figure 5: Left: Representation of a constraint surface as the zero set of a
function h(x). On one side of the surface h(x) is strictly positive, and on the
other side of the surface h(x) is strictly negative. Exactly on the surface it’s
zero. Right: Example of why the objective gradient ∇f must be orthogonal to
the constraint surface at the optimizer. Otherwise, there is a distinct direction
parallel to the surface along the function decreases.

Note that the gradient of the constraint function itself ∇hj(x) is already
orthogonal to the function’s zero set. If it weren’t, again there would be a
component of the gradient tangent to the zero-set’s surface which means the
constraint function’s value would change slightly as we move in the direction of
that component. But the zero set is a set for which the function value never
changes (it’s always zero), so it must be that that doesn’t happen. The only
conclusion is that the gradient ∇hj(x) must be orthogonal to this zero set
hj(x) = 0.

Generalizing this idea slightly, we can argue similarly that all rows of the
Jacobian of the vector valued constraint function ∂h

∂x must be orthogonal to the
combined zero set h(x) = 0 since each row of that Jacobian is the transpose of
the gradient of one of the constituent hj functions:

∂h

∂x
=


∇h1(x)T

∇h2(x)T

...
∇hl(x)T

 . (27)

Since the zero set must be a set for which any tangent vector is orthogonal
to all gradients ∇hj(x), that tangent space must be the null space of ∂h

∂x . In

other words, at a given point x, the null space of the Jacobian ∂h
∂x is the space

tangent to the constraint surface, and the row space of the Jacobian ∂h
∂x , which

is orthogonal to the null space, is the space of all vectors orthogonal to the
constraint surface.

Understanding this combined geometric and analytic view of the constraint
surface, the statement that the gradient of the objective function ∇f(x) eval-
uated at the local optimizers x∗ must be orthogonal to the equality constraint

22



surface can be formalized as

∇f(x∗) ∈ span

[
∂h

∂x

T

(x∗)

]
, (28)

where span(·) denotes the linear span of the columns of the given matrix. An-
other way of stating this span requirement is to say that there exist some coef-
ficients γj ∈ R for j = 1, . . . , l for which

∇f =
∂h

∂x

T

γ (29)

at x∗, where γ = (γ1, . . . , γl)
T . These coefficients γ are what we’ve been calling

the Lagrange Multipliers.
The inequality constraints have a similar argument. But in this case, each

of the constraints gi(x) may be either “on” or “off”. If the objective function is
pushing the optimizer into one of the inequality constraints (i.e. f would like the
gi(x) to be negative, but gi(x) won’t let it), then the best we can do is push gi
down to 0. In that case, x∗ is going to lie exactly on the constraint surface, and
we can effectively treat that constraint as though it were an equality constraint.
On the other hand, if f would like x to be in a region of the space where gi
is already positive, then the constraint doesn’t actually affect the problem. We
could throw it away without changing the solution. It’s as though the constraint
never existed.

Therefore, if we only had inequality constraints, the following conditions
succinctly describe these criteria

∇f =
∂g

∂x

T

λ (30)

λ ≥ 0,

where λ ∈ Rk+ is again a vector of Lagrange multipliers.
Combining these arguments, in the general case where we have both equal-

ity and inequality constraints, at the optimizer the gradient of f must lie in
the span of gradients of the equality constraints and the gradients of the ac-
tive inequality constraints. Combining all of these criteria into a single list
of equations gives the Karush-Kuhn-Tucker (KKT) conditions, which form the
first-order optimality conditions for the problem: at the optimizer x∗, it must
be that

∇f(x∗)−
k∑
i=1

λi∇gi(x)−
l∑

j=1

γj∇hj(x) = 0

g(x∗) ≥ 0 and h(x∗) = 0

λ ≥ 0

λigi(x
∗) = 0 for all i = 1, . . . , k.

23



That last equation is known as the complementarity condition. It states math-
ematically that if λi is strictly positive, then the ith inequality constraint must
be active: gi(x

∗) = 0. On the other hand, if the ith constraint is inactive
gi(x

∗) > 0, then the corresponding Lagrange multiplier must be zero.

References

Bertsekas, D. Dynamic Programming and Optimal Control. Athena Scientific, Bel-
mont, MA, 2nd edition, 2000.

Li, W. and Todorov, E. Iterative linear-quadratic regulator design for nonlinear bio-
logical movement systems. In In proceedings of the 1st International Conference on
Informatics in Control, Automation and Robotics, volume 1, pp. 222–229, 2004.

Nocedal, Jorge and Wright, Stephen. Numerical Optimization. Springer, 2006.

Posa, Michael, Cantu, Cecilia, and Tedrake, Russ. A direct method for trajectory
optimization of rigid bodies through contact. International Journal of Robotics
Research, 33(1):69–81, January 2014.

Stengel, R. Optimal Control and Estimation. Dover, New York, 1994.

Todorov, E. Optimal control theory. In Bayesian Brain: Probabilistic Approaches to
Neural Coding, pp. 269–298, 2006.

Todorov, E and Jordan, M. Optimal feedback control as a theory of motor coordina-
tion. Nature Neuroscience, 5(11):1226–1235, 2002.

Todorov, E. and Li, W. A generalized iterative lqg method for locally-optimal feed-
back control of constrained nonlinear stochastic systems. In In proceedings of the
American Control Conference, volume 1, pp. 300–306, 2005.

Todorov, E, Erez, T, and Tassa, Y. Mujoco: A physics engine for model-based control.
In In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.

Toussaint, Marc. Personal communication, 2014.

24


	Why optimal control?
	A classical approach
	One-step optimal control

	Foreseeing the future
	Quadratic approximations in nonlinear optimal control
	The question of where
	How do we form and optimize the quadratic approximation?
	Do we have to calculate the full Taylor expansion?

	A segue into more general nonlinear optimization
	Newton's method
	Augmented Lagrangian

	Nonlinear optimal control algorithms are applications of optimization methods
	Derivatives of distance potential
	Projecting orthogonally to a given direction.
	A brief review of Lagrange multipliers

