
Inverse Optimal Control:

What do we optimize?

Nathan Ratliff

May 27, 2014

Abstract

How do we design the behavior of an autonomous system? Optimal
control says, give us a cost function and we’ll give you an optimal policy.
Can’t get any better than that, right? So we go to work designing a cost
function. But for all our efforts to stay principled, we’ve all been there, in
the lab, late at night, tuning parameters, weighing cost components, de-
signing cost features, and tweaking, tweaking, tweaking to get the darned
thing to do what we want. Optimal control methods are optimizers, but
in reality, we don’t really know what we should be optimizing. This doc-
ument addresses the question of how we can, instead, leverage our strong
intuition of how we’d like the robot to behave to learn a cost function
that embodies demonstrations of that behavior. So defines Inverse Opti-
mal Control (IOC). Rather than computing an optimal policy given a cost
function, IOC uncovers the cost function that best explains demonstrated
optimal behavior. This problem is strongly related to a broad class of
very large scale multiclass classification problems (Structured Prediction)
in machine learning, and we start by deriving and discussing that connec-
tion in detail. We then derive a simple gradient-based method for learning
that that solves IOC. The algorithm consists of an outer loop optimiza-
tion that repeatedly solves the optimal control problem under successively
improving hypotheses and subsequently corrects errors the perceived be-
havior. The algorithm effectively automates the manual guess and check
process that plagues the design of optimal controllers.

1 Cost functions are arbitrary

Optimal control is built on an abstraction of the form

min
u1:T ,s1:T+1

T∑
t=1

ct(st,ut) + ψ(sT+1) (1)

s.t. st+1 = f(st,ut).

But what does this actually mean in practice? Defining optimal control in terms
of cost functions ct posits that we know explicitly how to rank states and actions

1

relative to one another. But how bad is it really if a robot gets close to a wall
and applies a particular torque to one of its joints? And more importantly, is
that 10 units of cost worse than being close to a bush? We don’t really know. All
we can really say is that we have a collection of cost measurement components,
such as the proximity of various points on the robot to the closest obstacle,
penalty terms on motion derivatives and torques, stability measures, measures
of contact utility, and often many many more. How we trade those terms off
is entirely unclear from the outset. All we can do in practice is try them out.
Guess, check, and tune until the system does what we want.

This cost tuning is one of those dirty secrets that makes implementing real-
world robotic systems so hard. We never know if we fundamentally need more
expressive terms or if we just haven’t found the right combination of the ones we
already have to achieve the desired behavior. But, on the other hand, we usually
do actually know what we want, and, importantly, we can even demonstrate that
desired behavior. Ideally, we’d like to invert the optimal control problem: from
those demonstrations of desired system behavior (which are relatively easy to
come by), can we automatically find the cost function under which the Optimal
Control abstraction of Equation 1 implement that behavior?

That question is the central question of Inverse Optimal Control IOC Kalman
(1964); Ratliff (2009). This document studies the relationship between this IOC
problem and the more general problem of multiclass classification in machine
learning that addresses the more abstract problem of generalizing the informa-
tion encoded in data. We’ll see how extremely large scale multiclass classifica-
tion renders a framework under which we can formalize and solve IOC problems
robustly in a way that intelligently automates the guess and check cycle that’s
typically forced on the engineer.

2 Linear combinations of features and general
applicability

Before formalizing the discussion above, lets consider for a moment at what
actually goes into a cost function. We abstractly denote state-action costs as
ct(st,ut), but hidden within that cost function is a notion of generality. We
want our cost functions to work anywhere, not just along the test corridor of
our lab. That means the cost components need to encode information about
the geometry of the environment around it. We mentioned above one such cost
function that allows us to do this: proximity to obstacles. A cost component that
measures proximity to obstacles works anywhere. Place the robot in a forest, we
can measure proximity to obstacles; place the robot on a sidewalk, we can still
measure proximity to obstacles. This number, the measured proximity to an
obstacle, generalizes. It’s not tied to any single location—it works everywhere.

2

2.1 Abstracting optimal control in terms of features

From here on out, we’ll assume our cost components generalize. That means
each cost component is not just a function of the state and action, but also a
function of the environment or context. Abstractly, for this problem of opti-
mal control, we can denote the context as γ. Denoting each of the k context

dependent intermediate cost components as c
(i)
t (γ, st,ut) and each of the l con-

text dependent terminal cost components as ψ(j)(γ, sT+1), our optimal control
problem becomes

min
u1:T ,s1:T+1

T∑
t=1

(
k∑
i=1

αic
(i)
t (st,ut)

)
+

l∑
j=1

βjψ
(j)(sT+1) (2)

s.t. st+1 = f(st,ut).

To emphasize the structure even further, we can denote the trajectory as ξ =
{(s1,u1), . . . , (sT ,uT), sT+1} and write the optimization problem as

min
ξ∈Ξ(γ)

k∑
i=1

αi

(
T∑
t=1

c
(i)
t (γ, st,ut)

)
︸ ︷︷ ︸

αT c(γ,ξ)

+

l∑
j=1

βjψ
(j)(γ, sT+1)︸ ︷︷ ︸

βTψ(γ,ξ)

, (3)

where Ξ(γ) denotes the set of all feasible trajectories under the dynamical con-
straints st+1 = f(st,ut) for this context. As noted in the above equation we
can abstractly describe this optimal control problem as an optimization over
a linear combination of context-dependent cumulative features [c(γ, ξ);ψ(γ, ξ)]
that we calculate across a given trajectory ξ. Intuitively, these cumulative fea-
tures represent what the robot tends to see across the trajectory. Note that the
character or behavior of the trajectory is in a sense encoded in these cumulative
features. Section 4.1 details these points more extensively.

For the purposes of this document we can define Inverse Optimal Control
concretely as: given data of demonstrated behavior D = {(γi, ξi)}Ni=1, where
each demonstration ξi is created relative to context γi, find parameters α and
β under which each trajectory ξi looks optimal with respect to the resulting
problem given by Equation 1. Technically, we want to understand the prop-
erties of the resulting optimal control system, such as how well it performs in
contexts that we haven’t yet seen with respect to what we would have demon-
strated in that context, but those questions dig more strongly into machine
learning than we’d like to do in this document. We can say, however, that the
framework developed below proceeds by first reducing the problem to a very
large-scale form of multiclass classification, called Structured Prediction Laf-
ferty et al. (2001); Tsochantaridis et al. (2004); Taskar et al. (2003, 2005). This
form of machine learning is widely studied, and the algorithms we apply have
strong associated out-of-sample generalization guarantees that will, indeed, an-
swer some of these theoretical questions. That’s one advantage to connecting
the problem of Inverse Optimal Control to such a heavily studied field. Machine

3

learning addresses interesting questions very relevant to designing optimal con-
trollers from demonstration.

2.2 The final abstraction: optimal control as a multiclass
classifier

There’s just one final step to draw the connection between optimal control and
multiclass classification, and it’s mainly just a change of notation. Instead of
using the control specific notation above, lets instead represent the context as
a generic x, the trajectory and set of trajectories as a y ∈ Y(x), and the cost
function that we’re optimizing as wTF (x,y). The relationship between this
new notation and the optimal control notation is

w =

[
α
β

]
and F (x,y) =

[
c(γ, ξ)
ψ(γ, ξ)

]
(4)

with wTF (x,y) =

T∑
t=1

(
k∑
i=1

αic
(i)
t (st,ut)

)
+

l∑
j=1

βjψ
(j)(sT+1).

Now the optimal control problem is

y∗(x) = argmin
y∈Y(x)

wTF (x,y). (5)

There’s no difference between this expression and a general multiclass classifier.
Y(x) is a set of classes, x is an input, and the function wTF (x,y) parametrizes
the score we place on how appropriate class y is for input x. The classifier, it-
self, simply returns best scoring (minimum cost) class. Multiclass classification
Bishop (2007) is a sub-field of machine learning that studies learning classifica-
tion functions of this form from labeled data D = {(xi,yi)}Ni=1. The learning
problem, specifically, is to find a weight vector w that “best” fits the data for
some notion of “best”. For the control problem above, this problem translates
to finding parameter vectors α and β under which the resulting optimal con-
troller best mimics the demonstrated trajectories. Again, we’ve been vague
about what we mean by “best”, but that we’ll define more concretely below
through an incremental exploration of what we’d like in a good solution.

There’s one caveat, though. We’ve described the problem of Inverse Optimal
Control as a multiclass classification problem, but the number of classes |Y(x)| in
the optimal control problem is huge. Each possible trajectory in a given context
is a different class, and to “classify” a context we need to find the optimal
trajectory using techniques from optimal control to optimize the objective in
Equation 5 which is an abstraction of the problem in Equation 1. That means
there are an infinite number of classes. Even if we have a tiny optimal control
problem where we can discretize the state space, the number of trajectories will
still be exponential in the horizon T .

Typically, in multiclass classification we consider just a handful of classes,
maybe two (true or false, does x have a property or does it not?) or maybe on the

4

order of 20 or 30 if we’re classifying handwritten digits or letters, but as we’ll
see below the particular generalized framework of multiclass classification we
consider here works well even for exponential or infinite class spaces. All we’ll
require is that the argmin optimization be computationally tractable.1 The
framework we describe subsequently to solve these very large-scale classification
problems is called Maximum Margin Structured Classification (MMSC) Taskar
et al. (2005); Ratliff (2009), a generalization of the Support Vector Machine
(SVM).

3 Learning huge classifiers

Suppose we have a data set of examples D = {(xi,yi)}Ni=1. How can we
characterize good classifier behavior with respect to this data? The function
wTF (x,y) scores the cost of associating label y with input x. For starters,
then, since the classifier is going to report as its classification the lowest cost
class y∗(x) = argminy∈Y(x)w

TF (x,y) for each example (xi,yi) we’d like the
labeled class yi to be assigned less cost than any other possible label y ∈ Y(x).
As an equation, this means we want to find w such that

wTF (xi,yi) ≤ wTF (xi,y) for each i = 1, . . . , N. (6)

But, in ultimately, we really want more than that. Typically, we have some
notion of how bad it is for the classifier to choose a given class y when it should
have chosen the example yi. Abstractly, we can write that notion of loss in
erroneously choosing y over yi as a function L(yi,y) = Li(y) (where the latter
is just shorthand notation for the former). The main properties we require of
this loss function is that it’s everywhere positive and that the true label y = yi
gets zero loss L(yi,yi) = 0.

For instance, more concretely, for the optimal control problem (writing it
in terms of trajectories ξi and ξ now), the loss function L(ξi, ξ) might measure

the difference between where we should have been s
(i)
t at time t and where the

trajectory in question actually places us st:

L(ξi, ξ) =

T+1∑
t=1

‖s(i)
t − st‖2. (7)

3.1 Loss-augmentation

Given such a loss function Li(y), we would really like to encode that loss
information in the costs as well. If the loss function indicates that a given
class y is really bad (Li(y) is large), then intuitively, it’s not enough that
wTF (xi,y) − wTF (xi,yi) = ε > 0 where ε is some tiny positive value. We

1 Technically, we actually need to be able to find the global minimum of the classification
optimization for the theory to hold, but in practice algorithms that that find good local
minima, such as nonlinear optimal control solvers, work well, too.

5

want the difference between the costs to be large. This class is really bad—we
want it to cost a whole lot more than then example.

On the other hand, if Li(y) is relatively small for a given y, then we can say
that y’s almost correct, so it doesn’t really matter as much even if we incorrectly
classify xi as y rather than yi. We’d like to be correct, but we don’t need the
gap wTF (xi,y) − wTF (xi,yi) to be very large. This notion of cost gap size
is related to what we call the margin. We want the margin between a possible
label y and the true label yi to be large when the loss Li(y) is large, but we’re
okay with a smaller margin when that loss Li(y) is small. In equations, this
margin requirement turns the inequalities of Equation 6 into modified set of
inequalities of the form

wTF (xi,yi) ≤ wTF (xi,y)− Li(y) for each i = 1, . . . , N. (8)

Rather than simply desiring that the cost of yi be smaller than the cost of all
other classes y ∈ Y(x), this equation says that it specifically has to be smaller
by an amount Li(y). When y is really bad, we want that the gap be huge.
When y is pretty close to correct, it’s okay if that gap is smaller.

This subtlety, called Loss Augmentation Taskar et al. (2005), gives the learn-
ing problem a structured margin that adapts to the class. When there are an
exponential, or even infinite, number of classes this structured margin can be
really important. Theoretically, this structured margin is crucial to the devel-
opment of strong generalization guarantees Ratliff et al. (2007); Ratliff (2009).

3.2 Defining the optimization

Notice, though, that there’s an ambiguity in the constraints of Equation 8.
If wTF (xi,y) − wTF (xi,yi) = ε, some really tiny positive number, we can
scale that ε up to be arbitrarily large just by multiplying w by some con-
stant. So one solution to satisfy the constraints is to just scale up w until
all positive gaps exceed the loss values Li(y). Clearly, that’s not the solu-
tion we’re looking for because scaling w doesn’t actually change the classifier
y∗(x) = argminy∈Y(x)w

TF (x,y) (it just scales the objective that the clas-
sifier’s optimizing, which doesn’t affect the minimizer). The constraints by
themselves aren’t enough to fully specify the learning problem.

What we’d really like is to find the smallest weight vector w such that
those constraints in Equation 8 hold. In other words, we’d like to minimize
‖w‖2 subject to the constraints given in Equation 8. In practice, there can be
noise in our data, and our features F (x,y) may not encode enough information
to truly represent the perfect function, so it may not actually be possible to
find a single weight vector w that satisfies all those constraints. Instead, we
allow there to be constraint violations for a price by adding non-negative slack
variables ζi that relax the constraints slightly. These considerations all lead to

6

an optimization problem of the following form

min
w

λ

2
‖w‖2 +

N∑
i=1

ζi (9)

s.t. wTF (xi,yi) ≤ wTF (xi,y)− Li(y) + ζi

ζi ≥ 0 for each i = 1, . . . , N,

where λ > 0 is a constant trade-off parameter. Notice that this problem has a
convex objective and a bunch of linear equality and inequality constraints. It’s,
therefore, a very large convex optimization problem (indeed, a very large QP).
We can’t solve it because it’s way to large right now, but at least we know it’s
convex. We’ll need to further exploit structure in the problem to see how we
can make it tractable.

3.3 Making the optimization tractable

The optimization problem described by Equation 9 now correctly defines what
we want in a good classifier that well-represents our data, but it’s still a very
large optimization problem. For every example i, there’s one constraint for
each class. As discussed above, there could be an infinite number of classes, or
at least an exponential number; that’s far too many constraints to handle in
practice.

3.3.1 A tractable number of constraints

A simple observation, though, reduces this exponential number of linear con-
straints down to just a handful of nonlinear constraints. There’s actually a lot
of redundancy in the constraints for a given example i. Suppose a particular
y∗ ∈ Y(xi) minimizes the right hand side of the cost constraints in Equation 9
in the sense y∗ = argminy∈Y(xi)w

TF (x,y)−Li(y). Then if the single equation

wTF (xi,yi) ≤ wTF (xi,y
∗)− Li(y∗) (10)

holds for that label y∗, it must also hold for all of those cost constraints in
example i. Thus, it’s perfectly valid to replace the exponential number of con-
straints for example i in Equation 9 with the single equation that specifies that
the constraint must hold for the optimizer y∗. That transforms the problem
into the following:

min
w

λ

2
‖w‖2 +

N∑
i=1

ζi (11)

s.t. wTF (xi,yi) ≤ min
y∈Y(xi)

{
wTF (xi,y)− Li(y)

}
+ ζi

ζi ≥ 0 for each i = 1, . . . , N.

7

This version replaces the exponential number of linear constraints with a more
tractable collection of N nonlinear constraints. For those familiar with convex
optimization, you may notice that this optimization problem is still convex Boyd
& Vandenberghe (2004). For those less familiar, the following manipulation will
make that property more clear.

3.3.2 Placing the constraints into the objective

If we rearrange the constraints to place ζi alone on one side

ζi ≥ wTF (xi,yi)− min
y∈Y(xi)

{
wTF (xi,y)− Li(y)

}
, (12)

we can leverage a nice property of this constraint. Consider the value of
wTF (xi,y) − Li(y) at y = yi. The loss function is zero there Li(yi) = 0,
so the expression just reduces to wTF (xi,yi). So it must be that

min
y∈Y(xi)

{
wTF (xi,y)− Li(y)

}
≤ wTF (xi,yi), (13)

since the left hand side of that expression is minimizing over a set of values
which includes the right hand side. Rearranging Equation 13 and combining it
with Equation 12 show that

ζi ≥ wTF (xi,yi)− min
y∈Y(xi)

{
wTF (xi,y)− Li(y)

}
≥ 0. (14)

In other words, the constraint ζi ≥ 0 is actually redundant. But more, since the
objective is minimizing

∑
i ζi, there’s no value (with respect to this objective)

in ζi being greater than the difference

ri(w) = wTF (xi,yi)− min
y∈Y(xi)

{
wTF (xi,y)− Li(y)

}
. (15)

At the minimizer ζi will be exactly that difference. This means it’s perfectly
valid for us to entirely replace ζi in the objective with these difference values
ri(w). Doing so forms the following objective

f(w) =

N∑
i=1

ri(w) +
λ

2
‖w‖2 (16)

=

N∑
i=1

(
wTF (xi,yi)− min

y∈Y(xi)

{
wTF (xi,y)− Li(y)

})
+
λ

2
‖w‖2.

This form of the problem is known as a regularized risk function Schölkopf &
Smola. (2002); Bishop (2007), and as we’ll show below, it’s now in a form that
we can easily optimize using any number of gradient-based methods. The sum
of terms on the left is known as the risk function, which measures simply how
well the hypothesis w fits the data. The last term is known as the regularizer,
and its purpose is to regulate the size of the hypothesis w to ensure it doesn’t
grow too big as we attempt to fit it to the data.

8

Figure 1: The negative of a min over linear functions −mini li(xi) equals a max
over the negatives of those linear functions maxi{−li(xi)}. Moreover, since
both a linear function and its negative are convex, this negative min over linear
functions is convex.

3.4 Optimizing the regularized risk function

Our risk term in Equation 16 contains a min operator, which, on the surface
seems hard to deal with. We’ll show here that it’s not.

3.4.1 Calculating the gradient

First, note that the difficult term is the negative of a min over linear functions.
That’s equivalent to a max over the negatives of those linear functions (see
Figure 1). So to understand the behavior of this term, we really just need to
understand the behavior of a term of the form l(w) = maxi li(w), where each
constituent function li(w) is differentiable.

Suppose for a given w there’s only a single maximizer li∗(w) (i.e. li∗(w) is
larger than any other lj(w) for this w). Then this function li∗(w) forms the
surface of l(w) at this point w. Clearly, then, the gradient of the function is
just the gradient of li∗(w) here. More concisely,

∇l(w) = ∇li∗(w) where i∗ = argmax
i

li(w). (17)

In other words, to find the gradient, we just need to optimize the over the terms
and then take the gradient there.

There’s a slight subtlety here in that there are points, called kinks, in the
function where the optimizer argmaxi li(w) may not be uniquely defined, i.e.
there may be a set I such that for each i∗ ∈ I, li∗(w) ≥ li(w) for all i (which
means the values li∗(w) are all equal for i∗ ∈ I). It turns out, in those cases,

9

the choice of which particular optimal i∗ ∈ I you use doesn’t really matter. The
different gradients ∇li∗(w) for each i∗ ∈ I are all called subgradients (and, in
fact, any convex combination of those subgradients are also subgradients); the
field of convex optimization formalizes the use of subgradients for optimization
Boyd & Vandenberghe (2004); Shor (1985). Of particular interest to us are
subgradient methods, which, for our purposes, we can think of as effectively
gradient descent methods where we use a fixed step size sequence rather than a
line search at each iteration. We’ll see below how these gradient based methods
apply to our optimization problem.

The bottom line is that we can find the gradient (really subgradient) of
the term miny∈Y(xi)w

TF (xi,y) − Li(y) by first optimizing to find y∗A(xi) =
argminy∈Y(xi)w

TF (xi,y)−Li(y) and then taking the gradient ofwTF (xi, y
∗
A(xi))−

Li(y∗A(xi)). In other words, the gradient of this term is

∇w min
y∈Y(xi)

{
wTF (xi,y)− Li(y)

}
= F (xi,y

∗
A(xi)). (18)

We denote this optimizer y∗A using a subscript A because this optimiza-
tion is almost the same optimization as the original classification problem y∗ =
argminwTF (x,y), except it’s loss-augmented. TheA denotes the loss-augmentation.
Below, we’ll see how this loss-augmentation affects the problem in the case of op-
timal control; typically, when the structure of the loss-function L(yi,y) decom-
poses naturally across the structure of the problem, the resulting loss-augmented
problem has the same form as the original problem, just with slightly modified
costs. That means that optimizing this augmented problem is no harder than
optimizing the original classification problem. See Section 4.2 for a specific
example of how loss-augmentation affects the optimal control problem.

Finally, the gradients of the remaining terms of the regularized risk objective
in Equation 16 are easy to calculate since wTF (xi,yi) is linear and λ

2 ‖w‖
2 is

quadratic:

∇wTF (xi,yi) = F (xi,yi)

∇λ
2
‖w‖2 = λw.

Now we’re fully equipped to calculate the gradient of the regularized risk func-
tion in Equation 16:

∇f(w) = ∇

[
N∑
i=1

(
wTF (xi,yi)− min

y∈Y(xi)

{
wTF (xi,y)− Li(y)

})
+
λ

2
‖w‖2

]

=

N∑
i=1

(
F (xi,yi)− F (xi,y

∗
A(xi))

)
+ λw, (19)

where y∗A(xi) = argmin
y∈Y(xi)

wTF (xi,y).

As a final note, the above analysis also indicates that this objective is convex.
The regularizer is just a quadratic function, the term wTF (xi,yi) is linear, and

10

the remaining term is a negative min over linear functions, which we saw above
is just a max over the negatives of those linear functions, which is again convex.
Thus, this formulation of the learning problem fully specifies the solution. There
are no local optima; starting from any w0, we can simply following the gradients
downhill until the procedure converges and that’s the unique globally optimal
hypothesis w∗.

3.4.2 Gradient-based optimization

Now that we have a gradient, since we’ve placed all the constraints up into the
objective, all we need to do now is run gradient descent to optimize the uncon-
strained objective. Algorithm 1 lists this gradient descent algorithm with one
modification. Since this objective function is a sum of terms, it’s often a better
use of gradient information to iterate over the terms and for each term i take a
step in the direction of the negative gradient of just that term. For incremental
subgradient method (also known as a stochastic gradient method), we can fold
1/Nth of the regularizer into each term, which leads to a regularization update
of the form

w ← w − ηt
λ

N
w = (1− ηtλ

N
)w, (20)

where ηt is the step size. There are theoretical constraints on the step size ηt
and the regularization parameter λ (see Boyd & Vandenberghe (2004)) that we
won’t discuss much here besides to say that ηt is often a decreasing sequence
that diverges to infinity when summed up such as ηt = η

t+c for some constant
c or ηt = η√

t+c
. The divergence ensures that we don’t stop prematurely just

because we’re taking steps that are too small (e.g. ηt = ηt is a geometric series
that converges to 1

1−η − 1 = η
1−η , so if the norm of each gradient is bounded

above by some value b, the hypothesis won’t be able to travel more than b(η
1−η)

through the hypothesis space). Additionally, the product ληt is typically smaller
than 1. In combination, that means the rule in Equation 20 simply suggests
that after each risk term gradient step, we should shrink the weights by a factor
1− ηtλ/N .

Notice that the main update of this algorithm

w ← w + ηt

(
F (xi,y

∗
A)− F (xi,yi)

)
(21)

has a very intuitive interpretation. Consider the behavior of the algorithm mid
training process. Before the algorithm has converged, the optimal class that the
optimizer returns is y∗A, but really yi should be the optimum. As a step toward
fixing that discrepancy, this learning algorithm increases the cost of features
characteristic of F (xi,y

∗
A) by adding it to the weight vector, and decreases the

cost of features characteristic of F (xi,yi) by subtracting it from the weight
vector. After this learning step, (the wrong) class y∗A will now cost a little
more, and the (correct) class yi will cost a little less. The algorithm has made
a small incremental step in the right direction. As the optimization continues,

11

Algorithm 1 Subgradient Method for Structured Classification

Input: Data D = {(xi,yi)}Ni=1, step-size sequence {ηt}∞i=1, initial hypothesis
w0.
Initialize w ← w0

while not converged do
for i = 1, . . . , N do

Solve y∗A = argminy∈Y(xi)

{
wTF (xi,y)− Li(y)

}
.

Update w ← w + ηt
(
F (xi,y

∗
A)− F (xi,yi)

)
.

Shrink w ←
(

1− ληt
N

)
w.

end for
end while

the learning procedure tries to find a hypothesis w under which, to the best of
its ability, each yi looks as close to optimal as possible. Mathematically, we can
say the algorithm attempts to find a (reasonably sized) w for which

N∑
i=1

L
(
yi, y

∗(xi;w)
)

(22)

with y∗(xi;w) = argmin
y∈Y(xi)

wTF (xi,y) for each i

is small. But since optimizing this total loss directly would be hard (full of local
minima, in particular), we instead choose to optimize the convex regularized
risk function in Equation 16, which, Algorithm 1 shows, is actually relatively
easy.

4 Algorithm intuition for optimal control

Much of the above discussion has been very abstract. We started with the broad
and poorly specified problem of trying to tune the cost function of an optimal
control problem, translated that in to the more specific and well-formed prob-
lem of tuning the weights of constituent cost function terms, and then entirely
shifted notation to demonstrate that that problem is really a very large scale
classification algorithm that can formalized leveraging techniques from Machine
Learning. We ultimately derived a simple gradient-based algorithm for this
general form of large scale classification (Maximum Margin Structured Classi-
fication), but how does that algorithm translate back to the optimal control
problem. This section now reverses the process of abstraction and translates
our final learning algorithm back to the notation of optimal control so we can
see how the training steps, and in particular the loss-augmented inner loop
optimization, play out to solve the Inverse Optimal Control problem.

The application of structured classification to Optimal Control results in a
very general class of algorithms for modeling and solving Inverse Optimal Con-
trol. In the context of behavior learning, one may view it as a form of Imitation

12

Learning: a trainer demonstrates the desired behavior, and this algorithm learns
an optimal controller to predict that behavior in new contexts.

4.1 The feature function: cumulative feature vectors

Thinking back to Section 2.1, the primary contribution to the feature function
F (xi,yi) is the vector of cost terms c(γ, ξ), which we can write more explicitly
as

c(γ, ξ) = T

1
T

∑T
t=1 c

(1)
t (γ, st,ut)

1
T

∑T
t=1 c

(2)
t (γ, st,ut)
...

1
T

∑T
t=1 c

(k)
t (γ, st,ut)

 . (23)

In other words, it’s (proportional to) a vector consisting of the average values

of each constituent cost term c
(i)
t (γ, st,ut) across the trajectory in question

ξ = {(s1,u1), . . . , (sT ,uT), sT+1}. This vector represents what cost-features
trajectory ξ sees on average as it traverses its route. Each different trajectory
sees on average a different distribution of features; this vector c(γ, ξ) character-
izes what each trajectory sees on average allowing us to quantify the differences
between trajectories.

Suppose, for instance, cost feature c
(1)
t measures the intensity of the color

yellow directly below the robot, feature c
(2)
t measures the intensity of the color

green below the robot, and suppose the example ξi demonstrates that the robot
should follow the yellow line painted atop a green surface. Then on average

along the example trajectory c
(1)
t , which measures the intensity of yellow, will

be high along the demonstration ξi, and c
(2)
t , which measures the intensity

of green, on average will be low. However, if we haven’t yet tuned the cost
function properly, the actual (loss-augmented) optimal trajectory returned by
the optimal control algorithm may be some trajectory ξ∗A that doesn’t yet follow
the line properly. Along that (erroneous) trajectory, the robot won’t be seeing
the right distribution of features. On average the value of the yellow feature

c
(1)
t will be much lower than it should (it’s not following the line well), and the

value of the green feature c
(2)
t will be much larger than it should (it’s traveling

too much along raw green patches). These discrepancies are encoded in the
difference between c(γ, ξ∗) and c(γ, ξi), which in part makes up the difference
vector F (xi,y

∗
A)− F (xi,yi).

Additionally, during the update, the algorithm adds a multiple of F (xi,y
∗
A)

to the weight vector and subtracts a multiple of F (xi,yi). In terms of the
yellow and green features of the optimal control problem, this update would
increase the weight on the green feature (it’s seen much more in ξ∗A than it is in
the demonstration ξi), and decrease the weight on the yellow feature (it’s seen
much more in the demonstration ξi than it is in ξ∗A). This update makes green
features now more costly and yellow features less costly, so the next time we

13

run the optimal control algorithm, the system will tend to favor yellow features
over green features more than it used to.

In general, if the current loss-augmented optimal trajectory ξ∗A sees more
of any particular feature than the example ξi does, the algorithm will increase
the cost of that because the behavior of the example indicates that that feature
should be higher cost than it currently is; and if ξ∗A tends to see less of a par-
ticular feature than ξi, the algorithm decreases the cost of that feature because
the behavior of example indicates the feature is less costly than it currently is.

Another quick and intuitive example is a tree feature. Suppose we have a
feature that indicates whether the robot is currently plowing through a tree.
Clearly, the demonstration is going to avoid trees, so on average it’ll see none of
that feature at all. If our current hypothesis accidentally has the robot plowing
through a tree, the difference between the average value of that feature for ξ∗A
and ξi will be largely positive, so the algorithm will greatly increase the cost of
trees. The next time around, hopefully, the optimal controller will be less likely
to plow through trees because we’ve increased their cost.

4.2 The loss-augmented optimal control problem

We’ve been thus far vague about how you might actually go about optimizing the
loss-augmented function. Here we’ll show that if the loss function structurally
decomposes in the same way as the cost function, we can usually use the same
optimizer that we used on the original problem to optimize this loss-augmented
problem.

This notion of structural decomposition is vague right now, but lets take a
look specifically at the optimal control problem. Equation 7 gives one example
of a loss function applicable to the optimal control problem. We repeat it here
for convenience:

L(ξi, ξ) =

T+1∑
t=1

‖s(i)
t − st‖2. (24)

Notice that it decomposes as a sum over time, just as the optimal control cost
function does. Above, in Section 2.1, we incrementally converted our nota-
tion from the optimal control problem to a more abstract representation that
emphasized its relationship to large-scale multiclass classification, ultimately
leading to y∗(x;w) = argminy∈Y(x)w

TF (x,y) as a generic representation of
optimal control focusing on the relationship between the parameter weights w
and the features F (x,y). Ultimately, though, in the inner loop of the learning
algorithm, we really want to solve the loss-augmented variant of this problem

y∗A(x;w) = argmin
y∈Y(x)

{
wTF (x,y)− L(yi,y)

}
. (25)

The following block of equations converts this abstraction back to control-
specific notation to see how the augmentation affects the optimal control prob-
lem. In this manipulation, we remove the example index i since it notationally

14

clashes with the sum over cost features and instead denote states along the
demonstrated trajectory by s̃t:

min
y∈Y(x)

{
wTF (x,y)− L(yi,y)

}
= min
ξ∈Ξ(γ)

 k∑
i=1

αi

(
T∑
t=1

c
(i)
t (γ, st,ut)

)
+

l∑
j=1

βjψ
(j)(γ, sT+1)

− T+1∑
t=1

‖s̃t − st‖2

= min
ξ∈Ξ(γ)

 T∑
t=1

(
k∑
i=1

αic
(i)
t (γ, st,ut)

)
+

l∑
j=1

βjψ
(j)(γ, sT+1)

−(T∑
t=1

‖s̃t − st‖2
)
− ‖s̃T+1 − sT+1‖2

= min
ξ∈Ξ(γ)

T∑
t=1

(
k∑
i=1

αic
(i)
t (γ, st,ut)− ‖s̃t − st‖2

)
+

 l∑
j=1

βjψ
(j)(γ, sT+1)− ‖s̃T+1 − sT+1‖2

 .

In other words, this loss-augmented optimization is equivalent to

min
u1:T ,s1:T+1

T∑
t=1

c̃t(st,ut) + ψ̃(sT+1) (26)

s.t. st+1 = f(st,ut),

where

c̃t(st,ut) =

k∑
i=1

αic
(i)
t (γ, st,ut)︸ ︷︷ ︸
ct(st,ut)

−‖s̃t − st‖2

and

ψ̃(sT+1) =

l∑
j=1

βjψ
(j)(γ, sT+1)︸ ︷︷ ︸

ψ(sT+1)

−‖s̃T+1 − sT+1‖2.

Because the loss-function decomposes as a sum over time in the same way the
original cost function did, the loss-augmented optimal control problem takes
exactly the same form as the original optimal control problem. The only differ-
ence is that each cost term has an added (negative) term −‖s̃t − st‖2. These
new terms actually decrease the cost of states designated as “bad” by the loss
function. That sounds backward, but it means that during training it’s ex-
tra easy for the optimal policy to make mistakes, so the outer learning loop
needs to try that much harder to find a policy under this handicap. When we
remove the loss-augmentation once the learning algorithm has converged, the
optimal control algorithm will perform extra well now on the examples. More-
over, theoretically, this loss-augmentation introduces a construct that makes it
possible to prove strong generalization guarantees for this approach Ratliff et al.

15

(2006, 2007). Both theoretically, and practically, using this loss-augmentation
handicap during training improves the final performance of the learned optimal
controller, especially in contexts we didn’t see in the training data.

5 Some closing thoughts

This document shows just a small sample of Inverse Optimal Control, and in
particular it focuses on one specific formalization of Inverse Optimal Control
as Maximum Margin Structured Classification Ratliff et al. (2006, 2009, 2007).
That view clarifies the relationship between Inverse Optimal Control and Ma-
chine Learning, and demonstrates that this form of behavior learning, which is a
form of Imitation Learning, is a convex problem fundamentally distinguishing it
from more difficult forms of behavior learning such as Reinforcement Learning,
but there are a number of alternative Inverse Optimal Control formulations and
algorithms in the literature (also known as Inverse Reinforcement Learning).
Ratliff (2009) reviews some of the history of the problem, and some interesting
papers for further reading include the work of Ng & Russell (2000); Abbeel & Ng
(2004); Ratliff et al. (2009); Silver et al. (2010); Ziebart et al. (2008); Dvijotham
& Todorov (2010),

One commonality among a number of these algorithms is that the learning
procedure ends up forming an outer loop optimization around an inner loop
optimal control solver or planner. For each hypothesized cost function, we run
the inner loop optimal control algorithm and rate the resulting behavior relative
to what we would have liked the behavior to be. Given that information, we
update the policy, and then iterate. Often it takes a number of iterations to
converge, but we the engineers, fortunately, aren’t doing this by hand—it’s all
automated.

References

Abbeel, P. and Ng, A. Y. Apprenticeship learning via inverse reinforcement learning.
In In ICML 04: Proceedings of the twenty-first international conference on Machine
learning, 2004.

Bishop, Christopher M. Pattern Recognition and Machine Learning. Springer, 2007.

Boyd, Stephen and Vandenberghe, Lieven. Convex Optimization. Cambridge Univer-
sity Press, 2004.

Dvijotham, K. and Todorov, E. Inverse optimal control with linearly-solvable mdps.
In In International Conference on Machine Learning, 2010.

Kalman, R. When is a linear control system optimal? Transactions ASME, Journal
Basic Engineering., 86:51–60, 1964.

Lafferty, J., McCallum, A., and Pereira, F. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proc. 18th International Conf.
on Machine Learning, pp. 282–289, 2001.

16

Ng, A. Y. and Russell, S. Algorithms for inverse reinforcement learning. In In Proc.
17th International Conf. on Machine Learning, 2000.

Ratliff, Nathan. Learning to Search: Structured Prediction Techniques for Imitation
Learning. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, May 2009.

Ratliff, Nathan, Bagnell, J. Andrew (Drew), and Zinkevich, Martin. Maximum margin
planning. In International Conference on Machine Learning, July 2006.

Ratliff, Nathan, Bagnell, J. Andrew (Drew), and Zinkevich, Martin. (online) subgra-
dient methods for structured prediction. In Eleventh International Conference on
Artificial Intelligence and Statistics (AIStats), March 2007.

Ratliff, Nathan, Silver, David, and Bagnell, J. Andrew (Drew). Learning to search:
Functional gradient techniques for imitation learning. Autonomous Robots, 27(1):
25–53, July 2009.

Schölkopf, Bernhard and Smola., Alex J. Learning with Kernels. MIT Press, 2002.

Shor, N. Z. Minimization Methods for Non-differentiable Functions. Springer-Verlag,
1985.

Silver, David, Bagnell, J. Andrew (Drew), and Stentz, Anthony (Tony). Learning
from demonstration for autonomous navigation in complex unstructured terrain.
International Journal of Robotics Research, 29(12):1565 – 1592, October 2010.

Taskar, B., Guestrin, C., and Koller, D. Max-margin markov networks. In Neural In-
formation Processing Systems Conference (NIPS03), Vancouver, Canada, December
2003.

Taskar, B., Chatalbashev, V., Koller, D., and Guestrin, C. Learning structured predic-
tion models: A large margin approach. In Twenty Second International Conference
on Machine Learning (ICML05), Bonn, Germany, August 2005.

Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun, Y. Support vector ma-
chine learning for interdependent and structured output spaces. In International
Conference on Machine Learning (ICML), pp. 104–112, 2004.

Ziebart, Brian D., Maas, Andrew, Bagnell, J. Andrew (Drew), and Dey, Anind. Max-
imum entropy inverse reinforcement learning. In Proceeding of AAAI 2008, July
2008.

17

	Cost functions are arbitrary
	Linear combinations of features and general applicability
	Abstracting optimal control in terms of features
	The final abstraction: optimal control as a multiclass classifier

	Learning huge classifiers
	Loss-augmentation
	Defining the optimization
	Making the optimization tractable
	A tractable number of constraints
	Placing the constraints into the objective

	Optimizing the regularized risk function
	Calculating the gradient
	Gradient-based optimization

	Algorithm intuition for optimal control
	The feature function: cumulative feature vectors
	The loss-augmented optimal control problem

	Some closing thoughts

