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Abstract

Gaussian distributions are perhaps the most important distribution
you’ll ever encounter, not because they represent everything well (they’re
usually, by themselves, poor approximations to complex systems), but be-
cause they’re one of the only high-dimensional distributions we can handle
analytically. And because of that, many approaches to more complicated
problems revolve around reducing the problems to Gaussian approxima-
tions or sequences of Gaussian approximations to leverage the tractable
algebra of Gaussian inference, which, to a large extent, itself reduces to lin-
ear algebra. That’s not to say Gaussian manipulations are easy— in many
ways the algebra can be tedious— but having a thorough understanding of
their properties, their relation to quadratic functions and linear systems,
and their manipulation in the context of probabilistic inference for such
queries as the transition and observation updates of a Kalman filter is cru-
cial for a strong foundation for further study within the uncertainty-laden
domain of state-estimation, localization, mapping, and sensor processing
in mobile robotics.

1 Introduction

The calculus of probability can be tricky, even for the mathematically and log-
ically inclined engineers who frequent technical fields such as robotics. This
document is designed to build up some of the fundamental ideas central to
reasoning about uncertainty from an intuitive and geometric standpoint to de-
velop a strong fundamental understanding of Gaussian distributions and their
manipulations. It culminates in a discussion of the Kalman filter.

This material caters to budding researchers in robotics, which means that
there’s a baseline of technical fluency required to understand these ideas. For
instance, I discuss multi-dimensional spaces, vectors, matrices and other such
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foundational concepts without much fanfare and assume these concepts are fa-
miliar. That said, I’ve found that geometric perspectives on potentially familiar
objects (e.g. positive definite matrices and their associated Eigenspectrum) are
often emphasized less in introductory courses than they should be. I spend
quite a bit of time developing these geometric perspectives here since they offer
insight into the interaction between a Gaussian’s covariance and it’s geometry.
I assume little knowledge of probability theory and try to develop much of what
I use from basic principles or at least strong intuition. As such, some of this
material may go too slow at times for those already familiar with the ideas.
Certainly, skip sections that are boring and come back if things don’t make
sense later on.

The appendices in this document aren’t necessarily auxiliary sections in the
traditional sense (i.e. they’re not just intended to be reference sections for
background material), but they’re more in depth offshoots into areas impor-
tant to the discussion but who’s inclusion in the document’s core would have
unduly impeded the flow. The first appendix discusses the geometry of posi-
tive definite matrices and the associated geometry of the covariance matrix of
a single multivariate random variable, the second generalizes those ideas to co-
variances between two different multivariate random variables, and the third
briefly reviews a basic formula central to the manipulation of Gaussians and the
derivation of the Kalman filter and expands on its geometric interpretation in
the context of the results presented in the previous two appendices.

Linear systems are some of the only systems we can directly manipulate al-
gebraically and understand in depth. When analyzing non-linear systems, we
often invoke linearizations (Taylor expansions or tangent spaces of differentiable
manifolds, for instance) in order to reduce them locally back to the better un-
derstood space of linear systems. In that sense, one of the best understood
functions in optimization is the quadratic function, since setting it’s gradient to
zero to solve for the critical point (minimum, maximum, or saddle-point) results
in solving well understood linear systems. Quadratic functions, in the context
of optimization, are therefore essentially just linear systems.

The Gaussian distribution is built around the quadratic function (it’s in-
versely proportional to an exponentiated quadratic), and, because of that, it’s
largely governed by principles of linear algebra. Manipulating Gaussians, as
we’ll see, is an exercise in manipulating and analyzing linear systems, making
Gaussian distributions one of the only closed-form continuous distributions we
can directly manipulate in practice. Many non-Gaussian systems are solved
or approximated by reducing them to a single Gaussian, a series of Gaussians
en-route toward an iterative solution, or collection (mixture) of Gaussians. The
Gaussian distribution is the hammer of probabilistic inference, system modeling,
and analysis; a thorough understanding of its geometry and role in inference is
critical.

We start from the basics, introducing first random variables and core statis-
tical quantities such as expected values and covariances. We then move into a
discussion of the geometry of Gaussian distributions (and more generally in the
appendix, how the Eigenvectors and Eigenvalues of positive definite matrices
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expose their geometry through the Eigen-decomposition of the matrix). The
discussion culminates in a simple derivation of the Kalman filter.

2 Random variables: Expectations and Covari-
ances

This section starts with a very broad and basic discussion of what a random
variable is. Readers already familiar with the concept should skip directly to
Sections 2.2 and 2.3 where we define the expected value (mean) and covariance
of a random variable and examine how these quantities transform under affine
transforms of the underlying random variables.

2.1 Random variables

Random variables are probabilistic extensions of the basic idea of variables in
mathematics. If you’ve ever tried teaching a young student about basic alge-
braic variables when they first encounter them early on, or if you can remember
back to your own first experiences with them, they’re not necessarily the easiest
concept to grasp initially. Once you lock onto the right perspective, they’re
trivial and you wonder why you ever had difficulty, but communicating that
concept can be tricky. The same thing holds with random variables in proba-
bility theory. Once you know what a random variable is, the basic idea is easy.
But until you have a solid picture in your mind about what these things are,
understanding probabilistic or statistical principles can be daunting. So this
section is aims to ensure that everyone’s on the same page with regard to what
a random variable is.

Regular variables in mathematics, such as x in the simple algebraic expres-
sion 5x + 7, are symbols that means “any number”. In a sense, they represent
all numbers simultaneously; you haven’t chosen any particular number for it
to be, so the entire real number line is fair game. In the same way, a random
variable, often denoted by a capitol letter X, also represents any number in a
domain (e.g. all of the real numbers, or some subset thereof), but with a twist.
Not all numbers are equally likely!

You can think of X as a giant bucket of items. If we reach in and pull
something out, some of the items will be more likely to come out than others.
For instance, all of the real numbers might be in the bucket1 in which case, when
we reach in and grab something, the something we pull out is a real number.
We call this process sampling from the random variable.

1Technically, then, we’d have to think of it as an infinitely long string coiled up in the
bucket, and pulling something from the bucket would mean pulling some infinitesimally small
snippet from the string, but that’s perhaps where the analogy breaks down. Mathematical
abstractions were invented to get around physicality problems like this in thought experiments,
so for our purposes, we can just say that the bucket has stuff in it and we can reach in and
pull individual elements out.
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The most interesting case is when not all items in the bucket are equally
likely. For instance, suppose we repeatedly pull numbers from the bucket of real
values and keep track of where they fall on the real number line. Perhaps most
numbers are centered around the value 5.0 and maybe 90% of them are between
3.0 and 7.0. That gives us a lot of information about the contents of the bucket
and allows us to predict with high likelihood what’s we might pull out of the
bucket next if we reach in again. This information tells us something about the
distribution of values we see coming from the bucket.

Formally, we model this distribution of numbers as a real-valued function
p(x) that maps some domain X (in this case, the real number line) to the positive
(or non-negative) real numbers p : X → R+. We won’t go into depth about the
rigorous requirements these functions, beyond to say that in order for them to
be meaningful and consistent, they need to integrate to 1 (

∫
X p(x)dx = 1), and

the probability that a number x sampled from X falls into a set S is the integral
of the density over just that set

∫
S p(x)dx.

In analogy to physics (ideas like mass density and total mass), we call p(x)
the probability density function since it tells us the amount of probability mass
per unit volume that sits at a point. The integral of this probability density then
tells us how much total probability mass falls within that region. High density
over a region results in high probability within that region (i.e. high likelihood
of pulling out a number that falls into that region in our example), and, vice
versa, low density within a region leads to very low likelihood of ever seeing
items that fall within that region when sampling. Since the density integrates
to 1 we can say that the total probability mass over the entire domain is 1, and
that every integral over a subregion we perform gives us the proportion of the
probability mass that falls into that subregion. In a precise sense, this means
that calculating

∫
S p(x)dx for S ⊂ X tells us the proportion of the time random

samples from X will fall specifically into the subregion S.
Often we’re interested in how multiple random quantities relate to one an-

other. In those cases, there may be multiple random variables Xi that we stack
into a random vector

X =


X1

X2

...
Xn

 .

We refer to X as a multivariate random variable. In most of what we see below
we’ll assume that we’re dealing with multivariate random variables.

A typical operation of interest within probability is the transformation of
these random variables by a function, such as Y = f(X), where f is some
function f : X → Y. It’s sometimes easiest to think of transformations like this
in terms of the process of sampling. If we sample a value from X (e.g. pull an
item out of the bucket), and then transform by f into the new space Y, then we
effectively get a sample from Y. If we do that repeatedly, we get a distribution
of samples within Y that we can represent using a probability density function
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over Y. The distribution over Y is related to the distribution over X in that it
is the distribution over X warped by the mapping f , but in general the two can
be drastically different in terms of their shape and properties.

This document is most interested in affine transformations of the form

Y = f(X) = AX + b

for some matrix A and vector b. As we’ll see below, if X is a Gaussian random
variable (i.e. has a Gaussian density, which we define precisely in Section 3),
then Y , created as an affine transform of X, is also a Gaussian random variable.
This is one of the properties that makes Gaussians such a pleasure to work with.

2.2 Expected values and affine transformations

Suppose there’s some random happening that we might be able to model with a
random variable X. For instance, the random variable might describe features
of sheep that live on a particular ranch. And suppose we can take a set of mea-
surements of each of these sheep that tell us, say, how much each one ultimately
weighs when grown up and how much wool we get from it. Then one question
we might want to answer is how much wool, on average, would we expected to
get from each sheep at the end of the year.

To make this precise, we can say that our multivariate random variable
X has a probability density p(x) modeling the distribution of different types
of sheep we expect to find in a given year. We can represent the quantity
in question, the amount of wool we yield from each sheep, as a measurement
function f : X → Rk. In this case k is just 1, but in more general settings you
can imagine there being multiple quantities we want to measure.

Now we have the tools to formalize this question of expected measurement.
We say that the expected value of f(X) is given by

E[f(X)] =

∫
f(x) p(x)dx. (1)

Since
∫
p(x)dx = 1, we can think of this as the weighted average over all x of

the values f(x) using weights p(x). The more p(x) is peaked around a particular
value, the more this weighted average tends to represent that value.2 Typically,
when we say “the expected value”, we’re referring to the expected value of the
domain itself: if we sample repeatedly from p(x), then what value do we expect
to see on average. In this case, our measurement is the identity f(x) = x, and
we have

E[X] =

∫
x p(x)dx.

2In the limiting case, where the distribution becomes infinitely peaked around a particular
value x0, this actually becomes the value f(x0). That strange object who is zero everywhere
except at x0 where it’s infinitely peaked (and always integrates to 1), is known formally as
a Dirac delta function and denoted δx0 (x). It crops up in a number of contexts throughout
statistics (especially nonparametric statistics), physics, and functional analysis, but we won’t
discuss it further in document. We generally assume that the density function is everywhere
finite.
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The expected value of a random variable itself is often called the “mean”.
For our purposes, what’s interesting about the expected value defined in

Equation 1 is how it changes under affine transformations. If a random variable
Y is defined as affine transformation of another random variable Y = AX + b,
where A is a matrix and b is a vector (both non-random), then the expected
value of this new random variable is simply the same affine transformation of
the original expected value:

E[Y ] = E[AX + b] =

∫
(Ax+ b)p(x)dx

= A

(∫
x p(x) dx

)
+ b

= A E[X] + b.

2.3 Covariance matrices and affine transformations

Another thing we might ask if we have two multivariate random variables is how
the dimensions of one vary with the dimensions of the other.3 For instance, if X
is a random variable over an m-dimensional space and Y is a random variable
over an n-dimensional space, we often wonder whether the ith dimension X is
high when the jth dimension of Y is large. Or in the opposite sense, whether
the ith dimension of X is low when the jth dimension of Y is large. Or maybe
knowing the ith dimension of X tells us nothing about the jth dimension of Y ,
in which case that notion of independence between the two variables is often
useful to know as well.

More concretely, suppose that the dimensions the random variable X list
out meteorological (weather) data measurements of a particular region, and
the random variable Y ’s dimensions tell us the percentage of time it snows,
rains, is sunny, etc. there. If ith dimension of X represents the humidity,
and the jth dimension of Y is the percentage of time throughout the day it’s
thunderstorming, we’d expect the ith dimension ofX to be large (high humidity)
whenever the jth dimension of Y is large (high percentage of thunderstorms).
On the other hand, we expect the opposite to be true between Yj and another
dimension Xk if that kth dimension represents the amount of sunshine that
location’s getting. Each dimension of X is potentially related to each dimension
of Y—the covariance matrix formalizes these intuitive interconnections.

2.3.1 Covariance formalities and intuition

The mathematical definition of covariance is

Cov(X,Y ) = E
[
(X − E[X])(Y − E[Y ])T

]
. (2)

To the uninitiated, this expression can look daunting, but once you’ve stared at
it long enough, it’s actually pretty intuitive. We’ll go through it piece by piece.

3The two random variables might actually be the same random variable, in which case we
want to know how each of the dimensions vary with one-another.
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First subtracting off the mean essentially just places us within a coordinate
system centered around the mean value. Rather than considering values of X
relative to some arbitrary zero point, X̃ = X − E[X] considers how the value
deviates from the expected value. Said colloquially, we can say we consider how
the value deviates from what we’d expect.4 In these coordinates, the covariance
is simply looking the expected value of the outer products: E[X̃Ỹ T ].

Lets take a look more closely at what the expected value of the outer product
is

E[X̃Ỹ T ] =


E[X̃1Ỹ1] E[X̃1Ỹ2] · · · E[X̃1Ỹn]

E[X̃2Ỹ1] E[X̃2Ỹ2] · · · E[X̃2Ỹn]
...

...
. . .

...

E[X̃mỸ1] E[X̃mỸ2] · · · E[X̃nỸn]

 . (3)

Each of these entries is of the form E[X̃iỸj ]. If the values (deviations from the

expected value) X̃i and Ỹj tend to both be largely positive or largely negative
when the other is, then this expected value is going to be large. Conversely, if
the opposite is true and one is typically largely positive when the other is largely
negative and vice versa, then this expected value is going to be largely negative.
On the other hand, if there’s no rhyme or reason to the relationship between
values of X̃i and Ỹj , i.e. sometimes they’re the largely positive or negative
together and sometimes they’re the opposite, then the positive products will
cancel the negative products in the expectation and the overall expected value
will end up close to zero (if not exactly zero).

The Covariance Matrix, which is given explicitly component-wise in Equa-
tion 3 and defined in Equation 2 is literally a matrix whose entries specify the
extent to which the dimensions of random variables vary with one another. We
often talk about the covariance matrix of a single random variable. When we
do, we formally mean, the covariance between the random variable and itself:
Cov(X) = Cov(X,X). From the definition above, we see that

Cov(X) = E[X̃X̃T ]

is a symmetric matrix whose ijth entry tells us the degree to which dimension
i varies with dimension j.

2.3.2 The affect of linear transformations

Now that we have these concrete definitions, we can ask what the Covariance
Matrix of a linearly transformed random variable Y = AX + b is. Here, again,
as in Section 2.2, both A and b are non-random, i.e. A is just a matrix and b is

4This statement is only partially correct in that when the distribution is multimodal, the
expected value may be a point in a desert land of low-probability between local maxima,
making the mean potentially far from “what we’d expect” to see from the distribution. That
said, the phrase is a nice one and intuitive enough warrant repeating.

7



just a vector. Writing out the definition directly gives

Cov(Y ) = E[(Y − E[Y ])(Y − E[Y ])T ]

= E[(A(X − E[X]))(A(X − E[X]))T ]

= A E[X̃X̃T ]AT = ACov(X)AT .

In other words, the covariance matrix of X, once pushed through the affine
transformation Y = AX + b becomes sandwiched between A and AT . This
transformation is often called a similarity transform of the covariance matrix
by A.

To summarize, for any random variable, linear transformations X → AX+b
behave very nicely in terms of both expectation and covariance computations.

1. The expected value is just pushed through the same linear transforma-
tion that’s transforming the random variable E[X]→ A E[X] + b, and

2. the covariance matrix becomes similarity transformed
Cov(X)→ A Cov(X)AT .

3 Gaussian distributions and quadratic functions

Gaussian distributions are probability distributions entirely specified by their
mean and covariance. In fact, there’s a rigorous sense in which they’re actually
the most uncertain distributions (i.e. they make the least assumptions) that
have those particular “statistics.”5

The general form of multi-dimensional Gaussian, denoted N (µ,Σ), where µ
is the mean and Σ is the covariance matrix, is given by

p(x;µ,Σ) =
1√

(2π)n|Σ|
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
,

where |Σ| denotes the determinant of the covariance and n is the dimension-
ality of the random variable. Already, we can see a close connection between
quadratic functions and the Gaussian distribution. The Gaussian distribution
is nothing more than a distribution inversely proportional to an exponentiated
quadratic. When the quadratic function gets really big, the probability gets
exceedingly small. And when the quadratic achieves is minimum value, in this

5The term statistic is commonly used to refer to values computed to express properties of
the distribution. In this case, we often say that the mean and covariance, together, form a
sufficient statistic for the Gaussian distribution. Additionally, the notion of maximal uncer-
tainty in this discussion comes from a principle known as the principle of maximum entropy.
We can write down a mathematical optimization problem that explicitly encodes the search
for a probability distribution (out of the space of all probability distributions) that 1. has
precisely the mean and covariance we’re considering, and 2. has the maximal entropy. (En-
tropy here is just an information theoretic quantity measuring uncertainty. Formally, it’s
H(X) = −

∫
p(x) log p(x)dx.) If we then solve that mathematical optimization problem ana-

lytically, we can show that the unique solution is the Gaussian distribution.
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case specifically at the mean x∗ = µ, the probability distribution achieves its
maximal value. This is actually a very useful property of the Gaussian: the
mean is the maximizer of the distribution and the minimizer of the underlying
quadratic function. This property isn’t true of all probability distributions (for
example, the mean may be between two peaks at a relatively low probability
point); it’s another one of the properties that makes manipulating Gaussians
nice.

3.1 A detour into quadratic functions and geometry

This section can be skipped on first read since it’s somewhat technical. It ex-
pands on the geometry of the Gaussian by analyzing the underlying quadratic
function in the exponent; a strong understanding of how the geometry of multi-
dimensional quadratics relates to the mean, covariance, and inferential proper-
ties of the associated Gaussian builds intuition for their use as building blocks
in a number of problems. That said, this material isn’t absolutely critical to be
able to follow the Kalman filter derivation in Section 4.

3.1.1 Stretched isometric quadratics

Lets examine the probability density function of a generic multivariate Gaussian
distribution with mean µ and covariance Σ:

p(x;µ,Σ) =
1√

(2π)n|Σ|
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
, (4)

Fundamental to this density is the quadratic function

f(x;µ,Σ) =
1

2
(x− µ)TΣ−1(x− µ)

in the exponent. When f is large, p is small, and vice versa. And more, the
quicker f increases, the quicker p decreases—symmetries in the shape of f are
reflected in the shape of p. Below, we’ll see that each f is really just a stretched
(or squished) and shifted version of a simple uniformly symmetric “canonical”
quadratic function c(u) = 1

2‖u‖
2. And more than that, this stretching and

squishing happens along well-defined orthogonal axes defined by the properties
of the covariance matrix Σ. Specifically, the Eigenvectors of Σ will tell us in
which directions the stretching occurs, and the (square roots of) the Eigen-
values will tell us how strongly the space is stretched or squished along those
dimensions.

To start we need to review what may be viewed as the canonical coordinate
system of a positive definite matrix. For those unfamiliar with Eigenvalues
and/or the Eigen-decomposition of positive definite matrices, I’ve included some
background material in Appendix A.
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Denote the Eigenvalues and Eigenvectors of Σ by {σ2
i }ni=1 and {ei}ni=1, re-

spectively. Using the expansion of Σ in terms of its Eigenvectors and Eigenvalues

Σ =
∑
i

σ2
i eie

T
i

(see Appendix A), and the properties(∑
i

σ2
i eie

T
i

)−1

=
∑
i

1

σ2
i

eie
T
i and

(∑
i

σi eie
T
i

)2

=
∑
i

σ2
i eie

T
i ,

we can rewrite the quadratic function as

f(x) =
1

2
(x− µ)TΣ−1(x− µ)

=
1

2

[(∑
i=1

1

σi
eie

T
i

)
(x− µ)

]T [(∑
i=1

1

σi
eie

T
i

)
(x− µ)

]

=
1

2
uTu,

where u =
(∑

i=1
1
σi
eie

T
i

)
(x− µ). Thus, in terms of u, the quadratic function

is just a very simple spherically symmetric function 1
2‖u‖

2. In order to get back
to the original function, we need to apply the inverse transform

x =

(∑
i=1

σi eie
T
i

)
u+ µ, (5)

which, from our analysis in Section 3.1, is just a stretching of the space along
the directions ei by factors σi and a shift by µ.

Looking back at the Gaussian density function of Equation 4, we can now
examine how this transformation affects the density. Consider a very simple
isometric Gaussian distribution with mean 0 and covariance I (the identity
matrix)6

p(u; 0, I) =
1√

(2π)n|I|
exp

{
−1

2
uT Iu

}

=
1

(
√

2π)n
exp

{
−1

2

n∑
i=1

u2
i

}

=

n∏
i=1

1√
2π
e−

u2
i
2 .

6 By isometric we mean that the Gaussian is the same in all directions of the space.
Geometrically, there’s no way to distinguish one direction from any other direction.
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That final expression shows that the zero-centered multi-dimensional Gaussian
with (isometric) covariance I is actually just a product of a bunch of independent
one-dimensional normal distributions.

This isometric density, though, is just a Gaussian built from the simplest
quadratic function we considered above. To get any arbitrary GaussianN (µ,Σ),
we can just apply the stretching transformation of Equation 5. Intuitively, this
transformation stretches the space as defined by the Eigenspace of Σ and then
shift it by µ.

Formalizing this intuition is a straightforward application of our quadratic
function manipulation procedure outlined above. If we translate u into stretched
coordinates via Equation 5, that corresponds to stretching the quadratic in
the exponent from the isometric 1

2u
Tu to the elongated 1

2 (x − µ)TΣ−1(x − µ).
Trivially so, the resulting density is now the density for a normal distribution
with mean µ and covariance Σ.

The next section shows that we can get this same result by applying this
transformation directly to the random variable U ∼ N (0, I).

3.1.2 Transformed Gaussian random variables.

One straightforward method for calculating how linear transformations affect
Gaussian distributions is by manipulating the random variables directly. Since
a Gaussian distribution is fully specified by its mean and covariance, we need
only compute these two statistics using the formulas discussed in Section 2.1 to
find how the transformation affects the distribution. This technique significantly
simplifies our derivation of the Kalman filter in Section 4.

Starting from a random variable U ∼ N (0, I), as we showed in Sections 2.2
and 2.3, transforming the random variable as

X =

(
n∑
i=1

σi eie
T
i

)
︸ ︷︷ ︸

Σ
1
2

U + µ

gives us a new random variable with mean µ and covariance (Σ
1
2 )T IΣ

1
2 = Σ. We

already knew this based on the above analysis of the density, and more than that,
the above analysis showed that this new random variable is again a Gaussian
distribution, but we now understand that all Gaussian random variables are
simply affine transformations of the random variable U . This observation makes
it clear that each Gaussian is actually just a stretched and shifted version of
the simple canonical Gaussian represented by U , and it’s an way to reason
about Gaussian random variables and calculate their parameters (the mean and
covariance).
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4 The Kalman filter

Now that we understand how to manipulate Gaussian random variables, deriv-
ing the Kalman filter is straightforward. This section assumes a background
in Bayesian filtering and focuses primarily on the calculation of explicit update
formulas under Gaussian assumptions.

To formulate the problem, let Xt ∼ N (x̂t,Σt) be a normally distributed
random variable denoting our uncertainty about our state currently at time t.
At this time step, we’re going to take an action at to take us into the next time
step, and we assume our probabilistic motion model takes the convenient affine
form

Xt+1 = AXt + at + εt,

where εt ∼ N (0, Q) denotes Gaussian noise injected into the system. In the
next time step, we’ll also make an observation yt+1 with distribution dependent
on the state predicted by our motion model

Yt+1 = BXt+1 + vt + δt.

Here vt is just a non-random offset vector, and δt ∼ N (0, R) is again Gaussian
noise injected into the system. The Kalman filter updates simply express the
posterior Gaussian parameters (the mean and covariance) of Xt+1 given Yt+1

as a function of the previous time step’s parameters and the coefficients of the
motion and observation models.

We can find these update rules by first computing the joint distribution over
both Xt+1 and Yt+1 and then invoking the conditioning identities in Equations 9
and 10. This computation involves calculating the mean and covariance of the
two multivariate random variables Xt+1 and Yt+1 as well as the covariance
between Xt+1 and Yt+1, and we can make all of these calculations by simply
invoking the covariance definition detailed in Section 2.1.

The mean of both Xt+1 and Yt+1 are straightforward to calculate

x̂′t+1 = Ax̂t + at

ŷt+1 = Bx̂t+1 + vt.

We use the x̂′t+1 to denote the mean of Xt+1 rather than simply x̂t+1 because it
represents the mean of our state after taking the action but before accounting
for the observation. x̂t+1 is reserved for the mean of the conditional distribution
over next states given the observation.

To find the covariance of Xt+1, we calculate

E[(Xt+1 − x̂′t+1)(Xt+1 − x̂′t+1)T ] = E[(A(Xt − x̂t) + εt)(A(Xt − x̂t) + εt)
T ]

= A
(
E[(Xt − x̂t)(Xt − x̂t)T ]

)
AT + E[εtε

T
t ]

= AΣtA
T +Q = Σ′t+1.
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Note that cross terms left out of this expression, such as E[A(Xt − x̂t)εt], have
expectation zero since the associated random variables are independent of one
another. Similarly, the covariance of Yt+1 is

E[(Yt+1 − ŷt+1)(Yt+1 − ŷt+1)T ]

= E[(B(Xt+1 − x̂′t+1) + δt)(B(Xt+1 − x̂′t+1) + δt)
T ]

= B
(
E[(Xt+1 − x̂′t+1)(Xt+1 − x̂′t+1)T ]

)
BT + E[δtδ

T
t ]

= BΣ′t+1B
T +R.

Finally, the covariance between Xt+1 and Yt+1 is

E[(Xt+1 − x̂′t+1)(Yt+1 − ŷt+1)T ] =
(
E[(Xt+1 − x̂′t+1)(Xt+1 − x̂′t+1)T ]

)
BT

= Σ′t+1B
T

All together, this gives us a joint distribution with the form

p(Xt+1, Yt+1) ∼ N
([

Ax̂t + at
Bx̂′t+1 + vt

]
,

[
Σ′t+1 Σ′t+1B

T

BΣ′t+1 BΣ′t+1B
T +R

])
.

Now we can leverage the Gaussian conditional formulas in Equations 9 and 10
to directly write down the Kalman filter update

x̂′t+1 = Ax̂t + at

Σ′t+1 = AΣtA
T +Q

xnew = x̂′t+1 + Σ′t+1B
T
(
BΣ′t+1B

T +R
)−1

(yt+1 − ŷt+1)

Σt+1 = Σ′t+1 − Σ′t+1B
T
(
BΣ′t+1B

T +R
)−1︸ ︷︷ ︸

K

B Σ′t+1,

where, as indicated, we often substitute K = Σ′t+1B
T
(
BΣ′t+1B

T +R
)−1

to
simplify the expression.

A Appendix: Eigenvectors, Eigenvalues, and the
Eigen-decomposition

For those not familiar with Eigenvectors and Eigenvalues, here’s a quick review
of their properties. An Eigenvector e of a matrix Σ is a vector who’s direction
doesn’t change when transformed by Σ. It’s likely stretched by some factor λ,
but its direction doesn’t change: Σe = λe. In general, λ can be negative, but
when Σ is a covariance matrix we’ll find below that λ is always be positive.
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A.1 A quick note on positive definiteness and positive
Eigenvalues

A positive definite matrix A is one for which vTAv > 0 for all v as long as v isn’t
the zero vector (in which case 0TA0 = 0). An example of a positive definite
matrix is the covariance matrix of a multivariate random variable X. As we
defined in Section 2.3, the covariance matrix is

Σ = E[(X − µ)(X − µ)T ],

which means for any v,

vTΣv = vTE[(X − µ)(X − µ)T ]v = E[(vT (X − µ))2]

=

∫
(vT (x− µ))2 p(x)dx > 0.

The last inequality is true because because each function value inside the integral
is non-negative, and there are some (formally, “measurable”) regions of the
domain for which it’s strictly positive. Thus, the covariance matrix is always
positive definite.

If any of the Eigenvalues λk of Σ are negative or zero, we’d have some vector
(for instance ek) for which

eTk Σek = λke
T
k ek = λk ≤ 0,

which would contradict the positive definiteness property. All Eigenvalues must,
therefore, be strictly positive since Σ is positive definite. When discussing
Eigenvalues in the context of covariance matrices, we often write λi = σ2

i to
simultaneously emphasize it’s positively and its relationship to squared stan-
dard deviations (variances).

A full discussion of Eigen-decompositions (diagonalizations) of symmetric
positive definite matrices is beyond the scope of this document, so we’ll just
take it to be true that all symmetric positive definite matrices have a full set of
n Eigenvectors and Eigenvalues, and that set of Eigenvectors form an orthonor-
mal basis B = {ei}ni=1 for the n-dimensional domain (and range) spaces of the
matrix.

The behavior of a matrix is entirely defined by it’s behavior on elements
of a basis,7 so since the matrix

∑n
i=1 σ

2
i

(
eie

T
i

)
behaves like Σ on each basis

element ei (specifically,
∑n
i=1 σ

2
i

(
eie

T
i

)
ek = σ2

kek since ei is orthogonal to ek
when i 6= k, and eTk ek = 1), we can conclude that this expression is a valid
expansion of the covariance matrix:

Σ =

n∑
i=1

σ2
i

(
eie

T
i

)
. (6)

7 For any matrix A and basis {vi}ni=1, the “action” of A on a vector is Ax = A
∑

i αivi =∑
i αiAvi, where αi are the unique coefficients of expansion in terms of the given basis.
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This decomposition in terms of the Eigenvalues and Eigenvectors of Σ, some-
times termed the Eigen-decomposition or diagonalization of the matrix,8 em-
phasizes the geometry of the linear transformation defined by Σ.

A.2 A window into the geometry of Σ

The decomposition in Equation 6 is a window into the geometrical properties
of Σ, and is particularly important in understanding Σ’s role in defining the
geometry of quadratic functions.

Since actually the square root of Σ is most relevant to the discussion in
Section 3.1.1, we’ll consider specifically here the matrix

Σ
1
2 =

n∑
i=1

σi
(
eie

T
i

)
, (7)

although all matrices formed by scaled sums of the outer product terms eie
T
i fit

the discussion below.
Each Eigenvector ei is both normalized and orthogonal to all other Eigen-

vectors ej for j 6= i, which means that each term σi(eie
T
i ) of the square-root

expansion in Equation 7 is proportional to the one-dimensional projection ma-
trix eie

T
i which projects a vector v onto the Eigenvector: [eie

T
i ] v = (eTi v)ei.

These terms therefore explicitly stretch the vector in the directions ei by factors
σi. Since each term acts orthogonally to all other terms none of these stretches
(or contractions in the case σi < 1) affects any of the others. This matrix
literally just stretches or contracts the space in the directions ei by factors σi.

This geometry is made explicit with a little more math. Since the set of
vectors {ei}ni=1 forms a basis for the space, we can expand any vector v as

v =
∑n
i=1 αiei as we did above.9 The action of Σ

1
2 as an operator can then be

analyzed as

Σ
1
2 v =

(
n∑
i=1

σi eie
T
i

) n∑
j=1

αjej


=

n∑
i=1

σi ei

n∑
j=1

αje
T
i ej

=

n∑
i=1

σiαi ei,

since each term eTi ej is zero when i 6= j and 1 when i = j. This bit of algebra

explicitly says that multiplying by this matrix Σ
1
2 stretches the vector by a

factor of σi in direction ei in the way we discussed intuitively above.

8Written in matrix form, this decomposition becomes Σ = UDUT , where U is an orthogo-
nal matrix whose columns consist of the Eigenvectors of Σ and D is a diagonal matrix whose
diagonal contains the corresponding Eigenvalues.

9 Since the Eigenvectors are normalized and orthogonal to one another, in this case each
αi = eTi v.
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B Understanding general covariance through the
SVD

The next section takes the above analysis one step further, using the SVD to
analyze a general covariance matrix between two different multivariate random
variables.

B.1 Geometric perspectives on the SVD

The Fundamental Theorem of Linear Algebra states that every m × n matrix
A can be decomposed in the form A = USV T , where U and V are both square
orthogonal matrices of dimensions m2 and n2, respectively, and S is a diagonal
matrix containing what are known as the singular values σi

m
i=1 of A. In this

section, we’ll generally consider the case m < n, but other cases can can be
analyzed analogously.

The singular values are closely related to Eigenvalues—indeed, many proofs
or the Fundamental Theorem of Linear Algebra proceed10 constructively by
first forming the Eigen-decomposition of the symmetric positive definite matrix
AAT . When A isn’t square (m 6= n), S mitigates the difference in dimension
with added zeros for buffering. For instance, for our setting where m < n, V is
going to be larger than U , so we typically write

A = U
[
S̃ 0

] [ V T//
V T⊥

]
, (8)

where S̃ is a square n × n diagonal matrix. This explicit notation illuminates
the role of the separate blocks of V = [V// V⊥]. When multiplied through, the
section of zeros in S obliterates the submatrix V⊥, so really, we could have
written it simply as A = US̃V T// . Writing it as we do, though, in Equation 8,

emphasizes that any components of a vector x lying within the span of V⊥ (or,
equivalently, we could say any components of x perpendicular to V// since V is
orthogonal) vanish when we multiply by A. The following calculation illustrates
this phenomenon:

Ax = U
[
S̃ 0

] [ V T//
V T⊥

]
x = U

[
S̃ 0

] [ V T// x

V T⊥ x

]
= US̃V T// x.

10To sketch the idea, we can decompose AAT = US̃2UT where the columns of U contain
the Eigenvectors and S̃2 is a diagonal matrix whose entries are the Eigenvectors σ2

i . Since

U and S̃ are invertible (the former is orthogonal and the latter is diagonal), we can write

A = US̃BT for some B, as of yet unknown. However, AAT = US̃2UT , so it must be that
BTB = I. The columns of B are, therefore, mutually orthogonal and normalized, so we can
write B = V//. The space orthogonal to V// doesn’t matter (as we’ll see below since it vanishes
upon multiplication), so we can just fill the rest of V with any orthogonal basis of the space
orthogonal to V// and call it V⊥.
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In other words, when we expand x = V//x+V⊥x in terms of its components that
lie within the orthogonal subspaces spanned by V// and V⊥, we see immediately
that the component V⊥x vanishes entirely from the final expression because it’s
eaten by the section of zero within S = [S̃ 0].

In linear algebra, we have names for the space spanned by V// and V⊥. The
first subspace, denoted span(V//), is called the row space of A since it spans
the same space as the rows of A itself.11 The second, span(V⊥) is called the
nullspace. Any vector within the nullspace (or any vector component lying
within the nullspace) has no effect during transformation by A—it’s annihilated
by the zero padding of S. That nullspace property results in a fundamental way
from the structure of A. If the rows of A are all independent (for m < n), then
since we can always perform the SVD, the above explicit decomposition given in
Equation 8 shows that there’s no room for the columns of V⊥ to have any effect
on the transformation. Finally, span(U) is called the column space of A since,
using a similar argument for analyzing span(V//), we can show that the columns
of A and the columns of U span the same spaces. Moreover, the respective
columns of all three of these matrices, V//, V⊥, and U , form orthonormal bases
for their respective spaces.

Now if we write this decomposition in a way analogous to the Eigen-decomposition
of Equation 6, we can gain insight into the behavior of matrix:

A =

m∑
i=1

σi uiv
T
i ,

where ui is the ith column of U and vi is the ith column of V//. This expression
shows us that the matrix is essentially identifying the ith basis vector vi of the
subspace spanned by V// with the ith basis vector ui of the subspace spanned by
U . Multiplying a vector x by A, therefore, computes the following:

Ax =

m∑
i=1

(
σi(v

T
i x)

)
ui =

m∑
i=1

 σi(v
T
i

∑
j

αjvj)

 ui

=

m∑
i=1

(
σiαi

)
ui

where we’ve used the expansion of x in terms of the basis {vi}ni=1. In other
words, the matrix looks at the component of x along a basis vector vi of the
domain, stretches it by a factor σi, and assigns it as the coefficient to the basis

11That’s straightforward to see remembering that U and S̃ are both invertible—there’s a
one-to-one mapping between the coefficients that reconstruct a vector in the row-span of A the
coefficients that reconstruct the vector in the row-span of V T

//
. More explicitly, if vT = βTA

for some coefficients β, then the coefficients β̃T = βTUS̃ are coefficients such that β̃V T
//

= vT .

Likewise, for any vector u in the span of V//, there are coefficients that construct that vector

as uT = α̃TV T
⊥ . Then since α̃TV T

//
= α̃T (S̃−1UT )US̃V T

//
= αTUS̃V T

//
, where α = US̃−1α̃,

we can say that uT is in the row-span of the A = US̃V T
//

.
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vector ui in the range space! You can think of this operation as taking the
space span(V//), which is a linear subspace of the domain, stretching it in the
directions vi by the factors σi, and fusing it with the range space span(U) so
that the bases align. Every matrix with m < n is an identification between a
stretched version of an m-dimensional linear subspace of the domain and the
m-dimensional vector space of the range.

B.2 Relevance to general non-symmetric covariance ma-
trices

What does this mean for Covariance matrices? So far we’ve discussed the ge-
ometry of symmetric positive definite covariance matrices Cov(X) that express
the inter-covariances between the individual variables of a single multivariate
random variable X. As we saw in Section 2.3, though, covariance matrices of-
ten more generally express the covariance between the individual variables of
one multivariate random variable X and another Y . In this setting, denot-
ing the mean of X by µx and the mean of Y by µy, the covariance matrix is
Σxy = E[(X−µx)(Y −µy)T ], which is an m×n non-square matrix where m and
n are determined by the dimensionalities of X and Y , respectively. Analyzing
the geometry of this covariance matrix requires we use the more general Singular
Value Decomposition introduced above. This analysis gives us the tools neces-
sary to understand the geometry of the Conditional Gaussian formula presented
below in Section C at an intuitive level.

The covariance matrix in this setting tells us how various directions in the
space of X vary with directions in the space of Y . It’s easiest to think the
geometry in terms of the trends seen in a collection of samples {(xj , yj)}Nj=1

taken from the joint distribution over both random variables p(X,Y ). Then
we can ask how a specific component of xj in the direction of some vector v
in the domain space12 X tends to vary with the associated component of yj
along a vector u in the range space Y. The left and right singular vectors
{ui}mi=1 and {vi}mi=1, in conjunction with the singular values {σi}mi=1, hand us
this information directly. When σi is large, components of the vectors yj along
vi will tend be large when components of xj along ui are large. Likewise, when
σi is small in magnitude, components of yj along vi won’t really correspond in
any consistent way with components of xj along ui. Finally, in this general case,
we can have negative σi, which means that components of yj along vi will tend
to vary negatively with components of xj along ui (when one’s largely positive,
the other will be largely negative).

This analysis tells us that although the multivariate random variable X
consists of m random variables and the multivariate random variable Y consists
of n random variables, where m < n, there are actually only m principle one-
dimensional random variable pairs (Ui, Vi)

m
i=1, each representing components of

X and Y along ui and vi, that co-vary with each other as given by σi. These
principle random variables are entirely independent of all other pairs of random

12Specifically, that component is v̂T xj , where v̂ is the normalized version of v.

18



variables in the sense that Vi has zero covariance with all other random variables
Vj and Uj when i 6= j. Every pair of multivariate random variables X and Y
fundamentally co-vary independently along fixed corresponding axes given by
the singular vectors. The degree to which they co-vary is given by the singular
values.

C Conditional Gaussians

This section recites without proof the formula for finding the mean and covari-
ance of a Gaussian of the form p(x|y) when you know the explicit form of the
joint distribution p(x, y).

We can write the joint distribution blockwise as

p(x, y) = N
([

µx
µy

]
,

[
Σxx Σxy
Σyx Σyy

])
∝ exp

{
−1

2

(
x− µx
y − µy

)T [
Σxx Σxy
Σyx Σyy

]−1(
x− µx
y − µy

)}
Then the conditional distribution p(x|y) is a Gaussian as well with mean and
covariance

µx|y = µx + ΣxyΣ−1
yy (y − µy) (9)

Σx|y = Σxx − ΣxyΣ−1
yy Σyx. (10)

Note that in these equations, since the covariance matrix is symmetric, Σxy =
ΣTyx.

We can understand these equations intuitively by leveraging the geometric
analysis outlined above. Consider Equation 9 defining the conditional mean, for
instance, in the context of filtering, where semantically x represents a state vari-
able and y represents an observation (strictly, the distribution over y would be
the probability of y given a hypothesized state). Before making an observation,
we predict what the observation would likely be µy given what we’ve predicted
our state to be. That prediction’s usually somewhat wrong; the more wrong it is,
the more we should correct the state prediction. The matrix ΣxyΣ−1

yy explicitly
transforms the error in observation space (between our predicted observation
µy and the actual observation y) into a corrective perturbation to the predicted
state µx. The more wrong our predicted observation was, the larger we’d ex-
pect that perturbation to be; in a sense, large differences between predicted and
actual observations contain more information than smaller differences.

But more than that, based on our observation model, there are some direc-
tions in observation space that are more likely to have variations than others.
The profile of these expected observation variances is handed to us by the obser-
vation model’s covariance matrix Σyy. Directions under which there’s significant
variance don’t give us much information since we already expect to see that sort
of variation given our current state estimate. But if we receive a particular obser-
vation y that varies from µy significantly along an unusual direction (one under
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which our observation model says there’s typically small variance), then that
observation’s unique and it potentially tells us a lot about how the actual state
might differ from the state we’ve estimated prior to making the observation.

Multiplying δy = y − µy by the inverse of Σyy means that we shrink com-
ponents δy in directions of high variance, and amplify it in directions of low
variance. This operation transforms δy based on how much information each
component provides.

The second matrix multiplication by Σxy then transforms this information
scaled observation offset vector δỹ = Σ−1

yy δy into the state-space to directly per-
turb the expected state vector µx. As we saw above in Section B, this covariance
matrix matches orthogonal directions vi in observation space to corresponding
orthogonal directions ui in the state space. Variation from the mean in obser-
vation space along a direction vi co-varies with variation from the mean in state
space along direction ui, but variations in those directions are entirely indepen-
dent of variations along any of the other directions uj or vj (i 6= j). Thus, if
our information scaled observation offset δỹ has significant components along
directions that tend to co-vary strongly with the state vector, that observation
tells us significant additional information about the state. The matrix Σxy then
literally translates δỹ to a significant perturbation to the expected state µx along
that direction.

On the other hand, if much of information scaled observation offset δỹ lies
along directions that don’t co-vary significantly with the state, this observation
doesn’t really tell us much about the state. That’s reflected in the multiplication
by Σxy, which will annihilate much of the vector along those directions. In the
extreme case, the offset could lie entirely in the nullspace of Σxy and thereby
hold absolutely zero information about the state. Even if the observation y could
potentially tell us a lot of information (e.g. the information scaled Σ−1

yy (y− µy)
is large in magnitude indicating that the observation is unique and unexpected,
full of potential information about the state), if that observation doesn’t really
correlate well with the state (the covariance between the observation variable
along that direction and the state is close to zero), then that observation still
doesn’t tell us much about the state.

In order for the observation to be informative, it needs to be both 1. unique
and unexpected (differs significantly from what we expected based on our motion
model state prediction), and 2. well-correlated with the state. Equation 9
reflects both of these criteria through the transformation ΣxyΣ−1

yy .
A similar set of arguments can be made to understand how the act of making

an observation can resolve some of the uncertainty. I won’t go into detail about
this one beyond to say that, examining Equation 10, we see that we start with
Σxx and subtract from that a term that represents the inverse of Σyy as viewed
from within the state space (sandwiched between operators Σxy and Σyx which
represent how variation within Y corresponds to variation with X). This says
that small variance directions in Y correspond to large reductions in variance
after conditioning since they’re highly informative.
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